|

AD-A127 582 TRANSVERSE AND QUANTUM EFFECTS IN SUPERFLUORESCENCE;
PUMP DYNAMICS FOR TH. . (U> PDLVTECHNIC INST OF NEW YORK
BROOKLYN_DEPT OF MECHANICAL AND A.. F P M

UNCLASSIFIED 11 APR 83 POLY-M/RE-83-4 HRO iGBBB 19-PH F/G 208/6

-
~
W



g SN AN A At e N TR
R g oo i p i NS AR . - N . .
K2
‘."I
A
4
&
.j'
4.5 uQs m
”m____, 0__ g m25
— 32
—_—— ,."s_,‘ l: 2.2
il = 20
”m LIo£.™ e
S———
E———] my 1.8
a :_»‘
[
i o)
E-ﬁ
oy
L
MICROCOPY RESOLUTION TEST chary ]
NATIONAL BUREAU OF StAnDARDS. 1963-4 ; :
£
.
[ ]
-
o
-
P
{ ]
T J
s e e intdniattnint -




L3RR 2T W, Sty .‘%‘ﬁ

s
:
:
:

e R RTR e #

oy AN B 1-5-7 T T ————y

echn|c ARD /(o W 19- /)/4

I

stitute (5

@f N@W@m

TRANSVERSE AND QUANTUM EFFECTS IN
SUPERFLUORESCENCE; PUMP DYNAMICS
FOR THREE-LEVEL SUPERFLUORESENCE;
AN ALGORITHIM FOR TRANSVERSE, FULL
TRANSIENT EFFECTS IN OPTICAL BI-
STABILITY IN A FABRY-PEROT CAVITY

F. P. MATTAR

Mechanical & Aerospace Engineering , S
and Spectroscopy Lab, M.I.T. . | ; ; v'_i‘w’"{_‘_
. J\a
The U.S. Army Research Office ",j

Contract DAAG 28-79-C-0148 &}’7 N

e e e S e e e r———

PETIRES TILINTAPIIS

R E‘:‘“ approved Ipoly_M/AE 83-4
oo oo rivios and sala its

‘ : Latiodted

g3 Or 02 03 a8

PP VP VT TRy WL AT WP SAp ey & o LIPS PRSP AP AT SPA W WP W Py et




FINAL REPORT
FOR CONTRACT DAAG 29-79-C-0149
(From Sept. 79 to Jan. 83)
on
TRANSVERSE EFFECTS ON LIGHT-MATTER INTERACTION
IN SUPERFLUORESCENCE AND OPTICAL BISTABILITY:
TRANSVERSE AND QUANTUM EFFECTS IN SUPERFLUORESCENCE;
PUMP DYNAMICS FOR THREE-LEVEL SUPERFLUORESCENCE; AN
ALGORITHM FOR TRANSVERSE, FULL TRANSIENT EFFECTS IN
OPTICAL BISTABILITY IN A FABRY-PEROT CAVITY

to
Physics Program

The U.S. Army Research Office

by

Farres P. Matt:ar'}L
Department of Mechanical & Aerospace Engineering
Polytechnic Institute of New York
Brooklyn, NY 11201

A e s - ——————

#’ M/AE 83-4
& April 1983
: t Also visitor to Spectroscopy Lab, M.I.T.

(from 1980-Present)

e




- wg - vl - R e e s uA L A
-« - - SR AN PN -

Two- and Three-Level Superfluoresence Calculations
and an algorithm for Optical Bistability

F.P. Mattar

Abstract

I.  Methodology
: omputational methodologies were developed to treat rigorously (i)

transverse boundary in an inverted (amplifying) media; (ii) to treat quantum
fluctuations in an initial boundary conditions in the light-matter interactions
problem; (iii) construct a two-laser three-level code to study light control
by light effect; (iv) construction of a data base that (a) would manage the
production of different types of laser calculations: cylindrical, cylindrical
with atomic frequency broadening, cartesian geometry; all of the above with
quantum mechanical initiation), (b) allow parametric comparison within the
same type of calculations, by establishing a unifying protocol of software
storage, of the various refinements of the model could be contrasted among
themselves and with experiment; (v) construct an algorithm for counterbeam

transient studies for optical bistability and optical oscillator studies.

A

II. Physics ;

A. Transverse effects were shown to be inherent to the problem of

superfluorescence. By refining the propagational model advocated by Feld,
we were able to simulate correctly Gibbs, et al's Cs data for the first time.
P The mean field approach was shown not to directly relevant to the Cs data.

The interplay of quantum fluctuations and transverse dynamic effects lead to

P

Fresnel variation of the time delay statistic in conformity with experiments.
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B. The previously studied as totally independent effects super-
radiance and swept-gain superradiance were shown to be strongly related to
and to evolve assymptotically from the first one to the second one. Output
energy stabilization was obtained by balancing the gain (from the inverted

medium) with the dynamic diffraction loss (from the finiteness of the beam).

C. The Study of three-level systems exhibited that injected coherent-
pump initial characteristic (such as on-axis area, temporal and radial width
and shape) injected at one frequency can have significant deterministic ef-
fects on the evolution of the superfluorescence at another frequency and its
pulse delay time, peak intensity, temporal width and shape. The importance
of Resonant Coherent Roman processes was clearly demonstrated in an
example where the evolving superfluorescence pulse temporal width T is
much less than the reshaped coherent pump width tp eventhough the two
pulses temporarily overlap (i.e., the superfluorescence process gets started
late and terminates early with respect to the pump time duration). The
results of the three-level calculations are in quantitative agreement with

observations in CO, pumped CHjF.




Collaborations:
(i) Physics
(a) two levels superfluorescence

Prof. Hyatt M. Gibbs (previously at Bell Lab, now at the Optical
Science Center at the University of Arizona)

Dr. Samuel L. McCall (Bell Lab)
Prof. Michael S. Feld (M.1I.T.)

Edward A. Watson (MSc. student under Prof. H. Gibbs who helped
implementing the fluctuations in the cylindrical program exported to
Arizona)

(b) two-level swept-gain superradiance and three-level pump dynamics
Dr. Charles M. Bowden (MICOM)

(ii) Numerics

Prof. Gino Moretti (Polytechnic Institute of New York) for the
Counter beam propagation.

(iii) structure software and system programming
- Richard E. Francoeur (Mobil International Division)

- Pierre Cadieux (system routine for data bases)

- Michel Cormier (user interface for data base)

- Yve Claude (pagination of the program to simulate on CDC the
virtual memory facility existing on IBM)
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Official Presentations at Meetings during the Tenure of the Contract

1 - The International Conference on laser 80, New Orleans, Dec. 30 (2
papers) (proceedings published by STS, MacLean, Virginia 1982).

2 - The International Conferences on Excited states and Multiresonant
Nonlinear optical processes in Solid, Aussois, France, March 81,
(Abstract digest, ed. by D. Chemla published for CNET by les
Editious de Physique, France).

3 - The European Conference on Atomic Physics, Heidelberg, April 81,
(Abstract digest ed. by J. Kowalski, G. Zuputlitz and K.G. Weber
European Physical Society Geneva, 1981).

4 - Los Alamos Conference on Optics, Los Alamos, 1981, Proceedings
published by the Society of Photo-Optic Instrumentation Engineers
(SPIE), Belligham, Washington 1981, wvol 288 pp. 353-363 and pp.
364 - 371.

5 - The Twelfth Annual Pittsburg Modeling and Simulation Conference
(May 1981), ed. W. Vogt and M. Mickle Proceedings published by
the Instrument Society of America, Pittsburgh, Pennsylvania.

6 - The International Conference on Optical Bistability Proceedings ed. by
C.M. Bowden, M. Ciftan and H.R. Robl (Plenum Press, New York
1981) p. 503 (invited).

7 - U.S. Army Research Office Workshop On Coupled Nonlinear Oscillators
Los Alamos Center for Nonlinear Series, 1981 (invited).

8 - The Fifth International Laser Spectroscopy meetings, VICOLS, (two
post-deadlines) Jasper, Alberta, Canada (1981), ed. by B. Stoicheff
et al. (Springer Verlag 1982).

9 - The Annual Meeting of the Optical Society at Orlando, Florida 1981
(two papers), see abstracts in J. Opt. Soc. Am 71, 1589 (1981).

10 - The Annual Meeting DEAP of the APS, NY, Dec (1981), 3 Abstracts. ‘

11 - The International Conference on Laser 81, New Orleans, Dec, 81 (1
o invited, 3 contributed), proceedings published by STS, MacLean,
- Virginia, 1982.

(] 12 - The Maxborn Centenary Conference, Edinburgh, Scotland, Sep 1982
= (3 papers), ed. by the Institute of Physics, U.K., proceedings to be
- published by SPIE, Belligham, Washington, 1983.

13 - The Fourth International Symposium of Gaz-Dynamic Lasers by M.
Onorato, the Polytechnic Institute of Torino (2 papers), Proceedings
in press.
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The XII International Conference on Quantum Electronics, Munich,
June, 1982 (1 invited paper, 1 contributed paper), see Appl. Phys.
(Springer-Verlag) June and Dec issues 1982.
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Refereed Papers from the work and methodologies developed during the
tenure of the research

1. Adaptive Stretching and Rezoning As Effective Computational Tech-
niques for Two-Level Paraxial Maxwell-Bloch Simulation; Computer
Physics Communications 20 (1980) 139-163, North Holland Publishing
Company (with M.C. Newstein).

Coherent Propagation Effects in Multilevel Molecular Systems; Pro-
ceedings of the International Conference on Lasers '80, December
15-19, 1980 p. 270-279 (with C.D. Cantrell, F.A. Rebentrost, and
W.H. Louisell).
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3. Swept-gain Superradiance in Two- and Three-level Systems with
Transverse Effects and Diffraction; International Conference on
Excited States and Multiresonant Nonlinear Optical Processes in Solids
pub. Les editiousde Physique, France (with C.M. Bowden).

4. Transverse Effects in Burnham-Chiao Ringing and Superfluorescence;
Proceedings of the International Conference on Lasers '80, December
15-19, 1980 (with H.M. Gibbs and Optical Sciences Center, University
of Arizoa, p. 777, 782 Tuscon, AZ).

5. Transverse Effects in Superfluorescence; Vol. 46, No. 17, p. 1123-1126
Physical Review Letters, April, 1981 (with H,M, Gibbs, S.L. McCall
and M.S. Feld).

6. Transient Counter-Beam Propagation in a Nonlinear Farby-Perot Cavity;
Computer Physics Communications 23 (1981) 1-17, North-Holland Pub-
lishing Company (with G. Moretti and R.E. Franceour).

7. Fluid Formulation of High Intensity Laser Beam Propagation Using
Lagrangian Coordinates; Computer Physics Communications 22 (1981)
1-11 North-Holland Publishing Company (with J. Teichmann).

8. Effects of Propagation, Transverse Mode Coupling, Diffraction, and
Fluctuations on Superfluorescence Evolution; SPIE Vol. 288-Proceedings
of the Los Alamos Conference on Optics, 1981, p. 353,363 by the
Society of Photo-Optical Instrumentation Engineers, Box 10, Bellingham,
WA.

9. Transverse Effects in Swept-gain Superradiance: Evolution from the
Superradient State; SPIE Vol. 288-Proceedings of the Los Alamos
Conference on Optics, 1981, p. 364,371 by the Society of Photo-
Optical Instrumentation Engineers, Box 10, Bellingham, WA (with
C.M. Bowden).
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11.

12.

13.

14.

15.

16.

Effects of Propagation, Transverse Mode Coupling and Diffraction on
Nonlinear Light Pulse Evolution; Optical Bistability (1981) Edited by
Charles M. Bowden, Mikael Ciftan and Herman R. Robl, Pub. Plenum,
NY p. 503,555.

Transverse and Phase Effects in Light Control By Light: Pump
Dynamics in Superfluorescence; Proceedings of the International
Conference on Lasers '81, December 14-18, 1981.

A Production System for the Management of a Results Functions Bank
and a Special Application: The Laser Project ; Published in the pro-
ceedings of the International Conference on Laser '81, ed. by C.B.
Collins (STS, MacLean Virginia 1982) pp. 1055-1115 (with M. Cormier,
Y. Claude and P. Cadieux).

Light Control by Light with an Example in Coherent Pump Dynamics,
Propagation, Transverse & Diffraction Effects in Three-Level Super-
fluorescence; IEEE International Quantum Electronics Conference,
Munich (1982), Abstracts Digest Appl. Physics Dec (1982) Springer-
Verlag (with C.M. Bowden).

Distortions of a CW Light Beam Propagating Through Gas: Self
Lensing and Spatial Ringings; Max Born Centenary Conference,
Edinburgh (Sep. 1982), (paper 36901), proceedings to be published
by SPlIlE,) Bellingham WA (1983) (with M. LeBerre, E. Ressayre and
A. Tallet). '

Coherent Pump Dynamics, Propagation, Transverse, and Diffraction
Effects in Three-Level Superfluorescence and control of light by
light; Physical Review A, Vol. 27, No. 1, Jan. 1983, p. 345-359 (with
C.M. Bowden).

Quantum Fluctuations and Transverse Effects in Superfluorescence;
Physical Review A, Vol. 27, No. 3, March, 1983 p. 1427-1434 (with

. E.A. Watson, H.M. Gibbs, M. Cormeier, Y. Claude, S.L. McCall and

17.

M.S Feld).

Coherrent Pump Dynamics, Propagation, Transverse, and Diffraction
Effects in Three-Level Superfluorescence and control of light by
light; Topics of current physicsL Multiple Photou Dissociation of
fgga)\torrﬁc Molecules, ed. C.D. Cantrell, Springer Verlag (In Press,
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REPRINTED FROM PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON LASERS '80, DECEMBER 15-19, 1980

TRANSVERSE EFFECTS IN BURNHAM-CHIAO RINGING AND SUPERFLUORESCENCE

F.P. Mattar*
Polytechnic Institute of New York
Brooklyn, New York 11201

H.M. Gibbs
Bell Labs
Murray Hill, NJ 07974

and
Optical Sciences Centert
University of Arizona
Tucson, AZ 85721

ABSTRACT

Dynamic diffraction coupling is examined in superfluorescence experiments using semi-classical model with
initial tipping angle. Effects of Fresnel number and of the radial dependence of initial polarization and
atom density on ringing, delay, and intensity are reported.

Semi-classical Treatment of Superfluorescence and Propagation Effects

Analytic solutions1 of superfluorescence pulse shapes have been obtained only by neglecting propagation
effects. Such solutions are somewhat academic in that all experiments so far use extended samples for which
propagation effects play a major role. Furthermore, a sample of volume less than 23 would experience_dipole-
dipole dephasing which would destroy SF or at least greatly modify it from the analytic descriptions.

Propagation effects can be taken into account fully in pulse propagation problems by numerigally inte-

rating coupled Maxwell-Bloch equations. Such semi-classicai cilculations have been carried out” and found
in good agreement with self-induced transparency experiments>S:" many years ago.

An identical semi-classical approach was taken in the first simulation of SF.5 sF begins by spontaneous
emission which requires a quantized field description. In a semi-classical model a purely inverted medium
does not radiate in the absence of an external electromagnetic field. Consequently, in order to apply the
semi-classical formalism to SF, the quantum initiation process was swept into a single initial polarization
tipping angle 8, or into a randomly fluctuating initial polarization.s More recent work has studied the
quantum fluctuations both theoretically® and experimentally.

The need to includg propagation effects in SF simulations was first shown by Skribanowitz, Herman,
MacGillivray, and Feld.? Their SF data in HF often contained pulses with substantial ringing in sharp contrast
with the sech? symmetrical single-pulse output predicted by the propagationless analytic solutions.
Skribanowitz et al. were influenced strongly by the work of Burnham and Chiao(3@) who predicted ringing when
small area pulses propagate through absorbers. In fact the Burnham-Chiao or McCall(3d) simulations for m-64
area pulse propagation in absorbers or for 6y area pulses in inverted media are identical to all of the early
SF simulations. Namely, the calculations were uniform-plane-wave one-way treatments. No transverse variables
were included. I.e., the following equations were numerically integrated:

u= (mo - w)_V - u/TZ' (1)
v = - (wo - wiu - V/Tz' - wcE (2)
W (w4 1)/T1 + vcE 3

3E + 1 3§ a . Z2munpv a)
dz ¢ at <

where u,v,w are the Bloch components of the pseudo polarization vector, E is the slowly varying envelope of
the electromagnetic field, n is the density of atoms with electric dipole transition moment p, « = 2p/A, and
T£ and T1 are the coherence and energy relaxation times, respectively.

*Work jointly suﬁported by the Research Corporation, the International Division of Mobil, the University of
Montreal, and the U.S. Army Research Office (Durham).
+Present address.
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Such simulations, which are just solutions of the sine-Gordon equation when relaxation is negligible,
predict very strong ringing where each ring can be 50% as intense as the preceeding ring. Ringing that
pronounced has never been observed. MacGillivray et al.> introduced a linear loss term -KE to the rignt
side of Eq. (4) to account for linear diffraction losses. A value KL = 2.5 reduced the ringing to that
observed, but the corresponding Fresnel number is 0.08 compared with their experimental value of order unity.
At any rate their simulations showed clearly that the polarization and electric field vary appreciably along
the sample, i.e., propagation effects are very important and a mean-field approximation is unjustified.

Initiation by Quantum Fluctuations

The Cs experi.mentsa provided much more quantitative data on pulse shapes and densities for SF under near-
ideal conditions. Attempts to simulate those data by uniform-plane-wave simulations were made by Gibbs §
vrehen8® and by Saunders, Bullough, and collaborators.” They found much more pronounced ringing and longer
(as much as twice) delays than observed. Relaxation, inhomogeneous dephasing, and diffraction were too weak
in the Cs case to account for these discrepancies. At that time the proper value of 6,5 was under discussion.
It was found that large 6,'s of order 1//uN did improve the fits substantially but not completely. (The
shape factor? u is typically 10-5.) It is now generally accepted from theoretical calculations and a small
area injection experiment10 that 8 = 2//ﬁ: That formula yields 6, = 10-% for the Cs experiment, resulting
in far too much ringing and too long delays. But determining the appropriate 6, was very significant; by
fixing that parameter, the need for other explanations of the ringing and delay-time discrepancies was
underscored. And the likelihood that two-way effects were very impprtant was greatly reduced because compli-
catedi two-way computations by Saunders, Bullough, Hassan, and Feuillade” as well as MacGillivray and
Feldll revealed insignificant reduction of ringing by two-way competition for 8, = 10-4. Only for very large
8o, of order 0.1, were two-way effects found to appreciably reduce ringing.

Those quantized-field studies of 6, led naturally to another significant numerical calculation, namely
a study of fluctuations in the output pulse shape as a result of the quantum nature of SF initiation. A
distribution of initial 65's consistent with the quantized-field results was used to initiate the usual
coupled Maxwell-Bloch simulations. The resulting distributioni? of delay times is in good agreement with
those observed by Vrehen’ and with an analytic expression for the variance, 62

These fluctuation results also reduced the discrepancy between experimental and simulation densities
for the same delay. It became clear that the data presented in Ref. 8 which simulations were trying to
reproduce, were selected for approximately minimum delay at a given denf&ty. It was estimated that the
average delay was about 30% longer than the pulses presented in Ref, 8. The density in the simulation
would then need to be 1.3 times higher, so that a 2X discrepancy is reduced to less than the +60% quoted
uncertainty in the density.

Transverse Effects

At this stage of the numerical simulations the primary discrepancy between the Cs data and the one-way
uniform-plane-wave computations with 6, = 2/N lay in pulse shapes. MacGillivray and Feld noted quite some
time ago, that a Gaussian inversion profile results in a distribution of delay times and that a Gaussian
average of plane-wave solutions predicts a highly asymmetric output pulse. The ringing is largely removed,
but the averaging of the large ringing results in a composite output with a tail much longer than observed.

Encouraged by the importance of dynamic transverse effects in self-induced transparency numerical
simulationsl3 and actual experiments,l4 we have allowed one transverse degree of freedom in SF simulations.
One must add to the righthand side of Eq. (4),

L1 2
g £ (5)

where V: = % g% (p g%),p = r/rp, rp is the radius of the initial inversion density at half maximum, L is

the sample length, and F ﬂr; /AL is the Fresnel number. E is, of course, complex so that phase variations

R . . R ;1
introduced bg diffraction can be included consistently. Thus, neither the mean-field approximation € no the
substitution” of a loss term for diffraction coupling is used, Instead, self-consistent numerical methods%S
are adopted which take into account fully both propagation and transverse (both sgat1al profile and Laplacian
coupling) effects. Thus our model possesses a degree of realism long hoped for.!

These transverse simulations are in much better agreement with the Cs data as shown in Fig. 1.17 Each
simulation density n, was adjusted to roughly reproduce the observed delay using &4 = 2/n 2L The inver-

(o}
sion density radial dependence was no(r) = n, exp[-(an)rZ/r;]. These transverse simulations fit the data
much better than the Gaussian average of plane-wave solutions for at least two reasons. First, the diffrac-
tion coupling between the minimum-delay center portion of the excited cylinder and the outer cylindrical
"shells” causes the delay times of the latter to be reduced. This allows more of the cylinder to emit at the

. same time; the overall delay is lengthened slightly, but the asymmetry is also reduced. See Fig. 2. Second,

relaxation included in Fig. 1 was found to reduce the asymmetry more than was anticipated from their rather
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': E‘ ng = 30x10%cm3 ni = 11.9X10‘-£cm3
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‘.‘ n2219x10'Ycm3 ng=3.8%10'Y%cm3
\
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NORMALIZED OUTPUT POWER

(b) theory (d theory
n2=18 x10'0/cm3 n2=885x10'Ycm3
8,=1.37x10"4 \ 8,=1.96x10"4
experiment ~~---~ \ experiment ==~ --
n%=7.6x10'Ycm3 ) n2234%10'Yem3
1-D theory —-—
A\ n2312x10'Ycm?
603169 %104

0 o 20 30 40 O 0 20 30
TIME (ns) TIME (ns)

40

Theoretical fits to Cs data of Ref. 8a. The two experimental curves in (a) indicate typical
shot-to-shot variations. The 1-D curve in (b) is the fit of Ref. 8b to the one-dimensional
theory. F = nré/AL =1, L =2cm, Ty = 70 ns, Ty'= 80 ngec, A = 2.93lu, T = S51 ns,
8y uniform GausBian, inversion nO(r) = ng exp[-inZ(r/rp) ] °
4o}~
30
four

20
o
[+)

o]

a b

Total energy coherently emitted per unit atom in arbjtrary units, as a fungtion of time with
Fresnel number as the labelling parameter. 9, = 10°% for all radii, 1, = §nro 3n% AL = 0.046 ns,
and L = 5.23 cm. (a) Uniformly inverted cylinder: inversion constant out to p, nd zero beyond
with F = woo/xL. The output is accepted only out to p,. (b) Gaussian inversion cylinder with

F and ny(r) defined as in Fig. 1.
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long times of T. = 70ns and T,' = 80ns. Although there is still more of a tail in the simulations than
the data, the aéreement is rather good and far better than the uniform-plane-wave attempts.

The ratio of the simulation density to the experimental density ranges from 1.63 to 2.85 in Fig. 1. It
was mentioned before that the average delays for the experimental densities were about 1.3 times longer than
the selected pulses. One would then expect to use 1.3 times higher simulation densities in that case,
reducing the ratio to 1.25 to 2.2. The quantum calculations® actually yield 8, = (2/N) (En(2mN)1/8y1/2,
not just 2/¥N, which is a 9% correction, reducing the ratio to 1.14 to 2.0. Since the assigned experimental
uncertainties are +60%, -30% the agreement is fairly good. If one chooses 9y = 6//5, which agreed better with
the small injection experiment, the ratio ranges from 1.01 to 1.78, in still better agreement.

Burnham-Chiao Ringing

Fig. 3 illustrates that this model of SF predicts appreciable ringing if one observes the output with
a detector much smaller than the output diameter. This suggests that the single-pulse symmetric Cs SF
pulses have substructure in space and time which retains the strong ringing predicted by the uniform-plane-
wave approach. The extended cylinder of unit Fresnel number F does not emit its energy in one single cooper-
ative superfluorescence burst after all. In fact, simulations reveal that ringing is reduced by decreasing
F. This allows emission from the cylinder's axis to diffract to the outer cvlindrical shells in a shorter
distance. Consequently, F somewhat less than one may be better than F equal to one for single pulse emission,
contrary to the usual arguments.

-
>
5 3
k4 -~
o -
z 2
=
g 3
= a
o -
) i
'
L 1 Il Ji 1 1 1
0 50 100 150
1/1'R
e b

Figure 3. Energy as a function of (a) transverse cootrdinate o = r/ry and time and (b) only time after
integration over p. Notice that strong ringing is predicged for a2 small-aperture detector in
the center of the beam although very little ringing is in evidence after radial averaging.

8, = 2.38 X 10-4 exp(-pz/Z), i1p=49mns, F=1, L =22.4cnm, and transverse Gaussian inversion
profile. As F is decreased, ringing is washed out into smaller and smaller o.
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7A Future Work

- J It must be emphasized that this transverse simulation of SF contains approximations; strictly speaking

5 it is a solution of the propagation of a small-area uniform-plane-wave coherent pulse through an inverted

3 medium with a Gaussian transverse inversion profile. Experiments could be performed under such conditions

i and our semi-classical description should be complete. The transverse SF simulation should be extended to
explore more thoroughly the quantum and three-dimensional aspects of SF. Quantum fluctuations in the initia-

tion should be included in the transverse calculation to examine the fluctuations in output shape and delay.
The initiation should not be inserted as a homogeneous tipping of all the individual polarization vectors
phased to emit a plane wave in the forward direction. Ideally the initiation and calculation should allow
three spatial degrees of freedom so that transverse modes can compete. The strong ringing on axis, as
predicted above, may not persist with three-dimensional fluctuations. Two transverse effects previously
observed in Cs might gmerge. It was found at high densities, approximately for sample lengths longer than
the Arecchi-Courtensl® coherence length, that SF from a Fresnel-one sample fluctuates and shows little or no
correlation between the pulse shapes at two different transverse positions.l® And large Fresnel-number SF
is emitted over the full geometrical angle with only small fluctuations.
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Abstract

We discuss coherent propazatxon effects in vapors of polyatomic molecules under conditions of lultiplch
photon excitation, including the generation of new frequencies and the development of transverse effects
such as self-focusing and seif-defocusing. Wwe give a discussion of the adiabatic-following approxi-atson
for multilevel systems, and discuss the generation of new frequencxea in this limit as well as ip the limit
of an instantaneously-switched-oa pulse. o

introduction

The multiple-photon excitation of polyatomic molecules has attracted much atteation since'the demoust
tion of isopotic selectivity in the multiple-photon dissociation of BCZ, {1] and SF . [2] particularly
after these processes were showa to occur in the absence of collisions ?3] la the easuing debate [4] as
to the origins of the multiple-photon excitation and dissociation of polyatomic mclecules, little bas been
said about the possible influence of coherent propagation effects and other collective processes upon the
interpretation of the experimental measurements of energy absorptioa that have been carried out to date.
It has recently been suggested {5] that the generation of near-resoansat sidebands as the result of propsgs
in a sultilevel molecular gaseous medium may be respousible for a number of efiects that have previously
been ascribed to a hypothesized rapid intramolecular relaxation of energy, such as the observed pusping of
aearly all rotational states by laser pulses of modest intensity [6). Also, the receat discovery of stro
self-focusing in SF, under conditions of collisionless multiple-photon excitation calls into question most
of the measurements of energy deposition that have been reported in the literature to date [7]. Under
these circumstances we have chosen to review the current status of propagation calculations in multilevel
systems, both from the point of view of generation ot new frequencies and from the point of view of trans~
verse effects such- as self-focusing and self-defocusing. Following a brief introduction to the current
understanding of the energy levels of polyatomic molecules such as SF,, we summarize the derivation of the
Schrddinger equation for multitevel systems and the propagation equation for the optical electric field
under the slowly-varying-amplitude~and-phase approximation (SVAPA). We then discuss the generastion of new
frequencies and transverse effects in two limits: the limit of a rapidly-switchedon pulse and the limit of
an adiabatically-switched-on pulse. In the limit of a rapidly-switched-on pulse, sidebands acre gegerated
that are nearly resonant with all the molecular radiative transitions that are accessible from the initial
molecular state (5,8]; the sideband amplitude saturates at a constant value after a finite propagation
distance. In the limit ot an adiadatically-switched-on pulse, a sideband spectrum is generated by the
process of self-phase modulation {9]). Finally, we present numerical resuits concerning the generatioa of
new frequencies by a system that modeis some of the qualitative chacacteristics of SF6 irradiated by a
rapidly-switched-on pulse.

Practical applications where coherent propagation effects in multilevel molecular systems may be
important include laser chemistry and isotope separation, and the propagation of powerful laser beams
through the earth's atmosphere. In laser-induced chemistry and isotope separation the generation of addi
tional frequencies, whether for rapidly-switched-on pulses or adiabatically=-switched-on pulses, will resu
in @ reduction of isotopic or chemical-bond selectivity and an overall increase ot multiple-photon excita
Trausverse effects such as seif-tocusing or selt-defocusing will alter the volume illuminated by a laser
during multiple~photon absorplicn experiments and will thereby affect the calculation of the number of
laser photons absorped per molecule. On a practical scale, selt-tocusing may detine a fundamental limit
the oplical path length-that can be utilized 1n industrial laser chemistry or isotope scparation, and may
thereby limit the useful through-put of sn industrial plant. For the problem of atamospheric propagatios,

*
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the generation of additional frequencies will result in an increase of absorption and heuce a reduction of
transmission for pulsed laser beams with respect to that calculated for low-intensity CW beams. Self-focusing
and self-detocusing will, of course, have an important effecL on beam quality and the ultimate achievable
far-field irradiance.

Energy lLevels of Polvatomic Molecules

From the point of view of calculations of coherent propagation, the dominant feature of the energy
levels of polyatomic molecules is the splitting of these levels by vibrational and rotational effects [4].
Originally it was supposed that multiple-photon excitation of polyatomic molecules would be very difficult
owing to the geaeral tendency of the spacing of the vibrational energy levels of an anharmonic oscillator
to decrease with increasing excitation energy. However, early force-field studies of polyatomic molecules
such as SF. that possess degenerate modes of vibration indicated that the splitting of the degenerate
excited vigrational levels of these molecules by vibrational anharmonic effects could provide an important
compensation for the anharmonicity of the vibration, and thereby increase the probability for finding a
nearly resonant ladder of states for multiple-photon excitation {10]. These early calculations have recently
been strikingly confirmed by experiment [11). Rotational compensation of anharmonicity-~in other words,
the compensation of vibrational anharmonicity by a change of rotational energy-~has also been suggested as
an important factor in the occurrence of nearly resonant pathways for the excitation of polyatomic molecules
[{12]. The pathways for excitation to an excited state with three vibrational quanta in SF, are indicated
schematically in Fig. 1. In the numerical calculations reported in this paper, we shall use a model of the
excited states and transition moments of SF, that was recently reviewed by Cantrell, Letokhov and Makarov
{1(c)]. In this model we employ effective states |n2JR> that represent grouped states of the real SF6
‘malecule, with with energy levels given by . .

E(niJR) = nv, + n(n-l)X33 + [2(2+1) - 2n] Gy * ByJ(J*1) + B L. {R(R+1) - J(I*1) - 2(2+41) + 20] (1)

°C3
vherz n is the nusber of vibrational quanta; £ is the vibrational angular momeatum number; J is the total
aagular momentum of molecules; R is the rotational angular momentum of the molecular framework; B, is the
rotational constant of the ground state of the molecule; {. is the magnitude of the vibraticnal angular
somentum in uaits of h; v, is the molecular vibrational ftgquency corrected for anharmonicity; X,. is a
vibrational anharmonicity constant; aad 633 describes the anharmonic splitting. The traasition aguents ia
this model are : ’
8 x (/Y ><atfl § Il a*1, 2> W(2'2' 3" 1IR) )
adJR; n+l, LLJ'R . o1 ’ ‘
vhere <p..> is the dipole trfnsition moment rveported in the literature; W is a Racah coefficient; and the
reduced 2ltrix element <alj qlln’l, £'> is given in the review [1(c)]. A detailed account of other improved
sodels for the energy levels of SF6 for purposes of calculations of multiple-photon excitation will be
published elsewhere. :

Equations_for Propagation

The propagation of a plane quasimonochromatic electromagnetic wave may be described in the slowly
varying amplitude and phase approximation (SVAPA) by the equation

aé(z,t") k
;z = ® (3)

2
2n LM
vhere £==E'exp(i¢) is the complex electromagnetic field with envelope E' and phase ¢; z is the propagation

distance; t' = t-nz/c is the retarded time; n is the linear index of refraction; k=2nn/A is the propagation
constant; and : i

pe ] .
f=20v 2T, a~1,8 Pma;m~1,B ’ “

®,A,B

= (S+iC) oi? : (5)

s the'slwly varying complex polarization. The complex amplitude 0 is related to the real dipole moment
Per unit volume P=N<u>, where p is the molecular dipole operator, by the equations

P = 2Re(Dell) ' %)

'CCOOC#S;)‘,“( 7y .

where

2N
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and
{=kz-ut+9¢ 9)
=-uwt’"+0 - . (10)

In Eq. (4), the subscripts m asd A demote, respectively, the vibrationsl quantum number and the set of
remaining quantum numbers needed to specify the effective state. The amplitudes ¢ oA of the states |mA>
have been subjected to the transformation

~ ~imut'
€ar ¥ an © an

which results in the Schrédinger equation

a‘EM - i <4 - -
B0 C Byt ® § E Va8 Sae1,n ’g“m;-l,n u-1,8 : (12)
Ba =™ -E/8 ‘ - 3

vhich must be solved in order to calculate the polarization P. Eq. (4). Preliminary accounts of results
obtained by the self-consisteat numerical solution of Eqs. (3) and (12) have recently appeared [8] and a
more detailed discussion is in preparation.

Excitation of a Multilevel System by a Pulse with Finite Risetime

When all the detunings A, for m # 0 are large compared to the Rabi frequency f1(c)]

. ¢ o . (16)
ugu_ﬁll . | 1

then the amplitudes € , of the states |mA> that are connected by dipoie-allowed transitions with the imitial

(ground) state JOB> w3y be calculated by first-order time-dependent perturbation theory For an incideat -
pulse

E e'“' ‘ ' :
E(t) = 20re Qas)
1te o . .

which describes a laser pulse vith a risetime t, and a fall time y'l, an analytical expression for the
amplitudes of the states with ms=] may be.obtaingd provided that

0 <yey< 1. ' ' 16)
In this cage the solution of Eq. (12) ia fx.rst-order time-dependent perturbation theory for the initial

condition ¢ o * 1, c =0 (a20),

(t ) = — exp(iA t') f‘ exp(-ia t")l.l.A 038“ Jde” G17)

may be explicitly evaluated [8(a)] with the result

- M E 2t exp(id_.t')
() = (_-A,gy) i T (1)
- e
where

w2 n(A.A'iﬂto (19)

In the limit of a rapid rise (“uA' t°<<1) and a slow fall (yt°<<n,
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and the polarization beco-es (assuming that oaly m=l is excited)

" {u 1?2
@=2in% -L‘-g!’?- exp(is t') (21)

This is identical with earlier estimates based on the approximation of an ianstantaneously switched-on
pulse. In the opposite limit of a slow rise (l ' >>l) and a slow fall (yt <«<1),

eny E t.expltid ,t' - na )e)
IRIE mA,08°0"0 = =A ) (22)

wvhere ¢ = sign (A.A). and the polacization becomes
inNe 2 R -
P= —t-—-i. (“M,OBI Egtoexpl(ia  t'-na 4t )] . (23)

In other vords. the aopluude of the sideband at the frequency wel /8 is reduced .in this case by the
factor exp(-n . This general concluston for multilevel sysféns establishes an analytical foundation
for qualitat;vefe sxnxlar conclusions arrived at by numerical methods in the special case of a two-level
system by Eberly, Konopicki and Shore {13].

The Adiabatic-Following Agnr&xinntion for Multilevel Systems

For a general pulse (for which 1a_, | need not be large compared to u,), and in the sudden approximation,
in which the incident field £(0,t') is"0 for t' § 0, and-is €, for t'> 0, then at the entrance face of the
sedium (2 = 0) the Schrodinger equation (12) is (for-t'>0) thae of a system evolving under the influence of
a time-independent effective Hamiltoanian whose matrix elements are

134
L °-A Al nA .
ff -1 .
":A;(-m = () 5"n;(-—1)3 . (24)
In this csse it is natural to introduce the eigenvectors ,h> of “eff'
I o = A ' (25)

which ste known as the “dressed” states. In the sudden approximation, the molecular system is initially
(at t' = 0+¢) in that superposition of dressed states that results in the initial state just prior (t'=0-g)
to the switching on of the field E:

. w(0)> = £ <Ajp(0)>)n> . ' . (26)
A - .

Subsequently sach dressed state JA> evolves with the time dependence exp (iAt'), so that

caalt') = f exp Cimuc'~iAt')<mAlA><Ay(0)> . . @1

1a this case the macroscopic polarization induced by CXL ) is (at z=0, before
& is wodified by propagation)

®o,e) = Ai.e“.exp [i(A-A")e'] (28)
vhere
€ =28 2 I I .07 o(o)<--1 BIA'>A'| pD>  <aC)A><AlmA> _ 29)

m,A,B a,p C,D
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Eqs. (28) and (29) show explicitly the generation of sidebands at every frequency A'~ A for every possible
pair of "dressed” states A, A'. ) .

In the opposite limit, in which the detuaing 4 , is large compared to the reciprocal of the shortest
time in which the field & changes significantiv, tien the phase of the polarization P generated by the
medium quickly becomes the same as the phase of E. This statemeat, which is evident from the general
discussion of adiabacitity in the textbook of Laudau and Lifshitz [14], and from the calculations of Arecchi
and Bonifacio [15], and which has been discussed more recenily for a two-level system by Eberly, Konopicki,
and Shore (13], may easily be established by using the language of dressed states [8(a)]. When the field
is switched on adabiatically slowly on the time scale of the reciprocal of the minimum detuning, then the
system remains in that "dressed” state that is correlated with the initial eigerstate of the system ‘A > -
| (-=)> at infinite time in the past, i.e., with the initial cigenstate in the presence of a vanishiag
optical field. In this approximation the Schrddinger-picture amplitudes are

-iAot'-i-wt' :
L -
caalt’) = <nA|A0>e . (30)
(where Ao and IAO > are (adiahﬂ;ic) functions of t'), and the polarization in this approximation is
fo,e’) = 2iN . i ; <sAlAj><e-1,BIA > PaA;(-1)B . : (31)
5%y N .

‘Since the components <mA{A> of the dfessed-state eigzenvectors |A> in the basis
|mA> may be chosen to be real, the polarization given by (31) is pure imaginary. Comparison with (5) (with
$=0) shows that in this case S(t')=0, i.e., that )

P(0,t*) = C(0,t")cos ¢ , . . (32)

so that the macroscopic polarization adiabatically "follows” the field E(0,t') = E'(0,t')cos {. An explici
evaluation of the eigenvectors JA> and eigenvalues A for a two-level system shows that Eq. (31) is identica
in that case with the adiabatic-following approximation of Grischkowsky et al. For a two-level system the
dressed-state eigenvalues are :

A,1,.2 1/2 :
A, =52z 8%+ w?y . (33a)
@ *7°

where Q = poi'lzﬁ. The eigenvalue A (A,) is correlated with the upper (lower) level as E'+0. The eigenvec
correlated with the initial (i.e.,grsuna) state at E’'=0 is

<olr> = —J18L ) ~ ' ' (33b)
2 (Aiﬂ"lm . |
Jal A ;
<A = _—_ : (33¢c)
2 T [A§¢lnI21”2 : .

so that the polarization for a two-level system initialiy in tﬁe ground state is, in the approximatiomn of
Eq. (31),

a
. 2 . Q :
eg 2iN ——————— = - 2iNy (34)
(g 2?72 [aZeu?] 2 ‘

which is identical with Lhe adiabatic-followihg approximation of Grischkowsky et al. [16}. Thus Eq. (31)
defines an adiabatic-following approximation for multilevel systems. .We reiterate that this approximation

is valid only sufficiently far from resonance, i.e., when I(A“A) . ] 7 is small compared to the risetime of
E'(t'). A min

It is evident that in the adiabatic-following situation described by Eq. (31) no resonant sidebands
are generated. However, frequencies other than the incident frequency w will still be preseat in the tield
radiated by the system,

z
Ceas(zt) = —3 f@(z'.t')dc' : (35)
2n € 0
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due to the phenomenon of self-phase modulation [9,17]. Ia the adiabatic-folluwing limit it is pussible to

_ define the nonlinear susceptibility X(E') as follows:

oy o PCO,t') _ C(O,t') _ 2ReD(O,t’') (36)
X(E') = o) T E 0.t B0

where D may be read off from Eqs. (4) and (8). We note that X as defined in (36) contains all powers of
E'. Eq. (36) is not restricted in validity to a particulac order of perturbation theorv. However, under
some Circumstances one may expand the nonlinear index of refraction

o™ = (10x) 12 Gan

approximately in the usual way:
nut - a, * % nz(E')z
(38)

We shall report a detailed numerical calculation of nNL. n, and o, as functions of w in a separate publication.
However, we note here that for a system gf tength L the figld (35; radiated by the medium initially (for i
sufficieantly small z) grows as kL n,(E')", so that the Fourier amplitude of é at a detuning &w will be
iaversely proportional to the second derivative of [E'(t’')]" at the statioaaryssgase points:

-1/2

3 .
aw = -knzL(d(E') /dt')/2no

This is, of course, the phenomenon of self-phase modulation, which is well known in quasi-two-level systems
{17]. The bandwidth of frequeacies generated by self-phase modulation will exceed the original laser
baadwidth Amo provided that

(39)

2
d Y |
cad() = l;:TElE (c')]

2

kn,[E*]
1 d 2
— (—-—}, kL 2 1 ) (60)
= ac’ 20, max .

. Preliminary estimates made with Eq. (40) indicate that the bandwidth of frequencies generated by self-phase

modulation exceeds A"b under the conditions of most multiple-photoa absorption experiments performed to
date [9].

Transverse effects (self-focusing and self-defocusing) will occur in the case of a rapidly-switched-on
pulse (i.e., for nearly resonant excitation) for a multilevel system as well as for the two-level systems
that have been the subject of previous studies. We are now conducting numerical calculations of trans u.rse
effects in-pulse propagation for sultilevel systems, using previously developed numerical techaiques {i8].
One of these techaiques is a perturbation approach that correctly describes the initial self-focusing
behavior without the numerical complexity associated with a full coherent self-focusing calculation. The
pertucbation method uses two plane-wave pencils, one located on the axis of the (cylindrically symmetric)
beam, the other slightly off-axis and with smaller intensity. {t may be shown analytically that these
pencils move with different velocities, and that the initial self-focusing is directly attributable to this
difference of velocities.

However, ia the limit of a slowly-switched-on puise (i.e., for nonresonant excitation) the traasverse
effects associated with pulse propagation ia multilevel systess may be discussed using the nonlinear index’
of refraction, Eq. (37). Vhenever the expansion (38) is valid, then transverse effects may be calculated
using standard theoretical approaches that take (38) as a point of departure. We shall give a discursion
of transverse effects based on this approach in a future publication. Here we content ourselves with the
observation that the spatial growth rate a of the mode of the self-focusing instability with maxisum growth
rate [19]) is such that

al 21 . (41)
provided that
2
a,[E']

Zno

KL 3 1. : (62)

Self-focusing effects may be expected to play an important role whenever (42) is satisfied, as it appears
to be in many multiple-photon absorption experiments (7).

For a real molecular system subject to a thermal distribution of initial states, some molecules will
satisfy the criterion for rapidly-switched-on pulses and other molecules will satisfy the criterioa for
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adiabatically-switched-on pelses. Under these circumstances the calculation must be pursued along differ
lines for different classes of initial conditions. The dynamics of those molecules that are excited clos
to resonance must be described using the fuill Schrodinger Eq. (12), while the dynamics of molecules excit/

far from resnrance may be described by Eqs. (30)-(31). Calculations using this technique will be. reported
elsevhere.

Numerical Studies of Pulse Propagation in Multilevel Systems

Since Eqs. (3) and (12) are (formally) two ordinary differential equations in the different independs
variables 2,t', coupled by the (nonlinear) polarization sz,t'). the self-consistent numerical solution ¢
(3) and (12) may be obtained by essentially the same methods used for pulse propsgation in two-level systq

by Hopf and Scully [20] and Icsevgi and Lamb [21]. In broad outline, the method consists of integrating
(12) to find c_,(z,t") and eventually @(z,t') (Eq. (4)) as functions of t' for a given (fixed) value of
using the (known) dependence of 5(:,&') on t' at the position z. Eq. (3) is then integrated one spatial
step Az for each (discrete) value of t' to find the field € (z+Az,t*) as a function of t' at the new posi
zr0z. Equation (12) may nov be integrated to find cmA(z*Az,t') as a function of t' at 2+A2, and so on.

The choice of a numerical algorithm for the solution of equations such as (3) and (12) has been care
studied by lcsevgi and Lasb {21}, who found the modified Euler predictor-corrector method to be fast and
give acceptable accuracy. Since our problem involves substantially more time points (values of t') than
were employed by lcsevgi aod Lamb, we chose the slightly more accurate: Hamming predictor-corrector sethod

between results obtained with the Hamming and modified Euler predictor-corrector methods in the integrati
of (12) in test calculations were not significant. In all cases we used iteration to provide the initial

values at two successive temporal or spatial steps required to start the predictor-corrector algoriths
[21}.

[22] for the integration of (12), but retained the modified Euler method for (3). In fact, the difterenc%

The temporal and spatial step sizes h  and h_ were chosen to be sufficiently smal) that further refin#

ment did not significantly affect the soluEion. bt large enough to minimize computaiional time given the
desired accuracy. It may be shown that Eqs. (12) display an absolute instability for time-step sizes ht
such that . )

’ 8 L.s: b, > 1. ' ' : (43)

in comparison with that {e_, | is always <<1) imposes a maximum acceptable value of h that (for weak

The necessity to avoid this instability (even for the anplitude~z of a state for which ’A ' is so lar;g#

. fields) may be very small given the other physically relevant time scales ta the probles, such as (wh) ..

. For the molecular energy levels and laser frequencies used im our calculations, the choice

1 2n : : ;
ht tio—o- ‘-‘—.E . (6‘)

gave acceptable results without requiring too much computational effort at low values of - Typical
numerical results for the amplitude ICJIEO and phase o/ of a pulse

e, et <o
Ew,x) = .
Epy t' 20 . ’ (45)
are showa in Fig. 2.

In order to investigate the frequencies introduced into the pulse as the result of propagation, we
calculated the spectrum of the field radiated by the medium, Eq. (35). Since the field calculated self-
consistently is {(z,t'), and since Eq. (3) may be rephrased as the integral equation

Ez,e) =6

iae (8 + & (2,t") (46)
(where £rad is to be calculated using the self-consistently determined polarization P ), we see that

Crag (2t =&(z,e) =& (e 1)

Since the generation of sidebands 15 a non-adiibatic phenomenon, the autocorrelation G(t.,T) and its Fouri

inc
To caleculate the spectrum of dirad (z,t'), we have calculated the numerical Fourier transform of the auto-
-correlation function
-1 (%7 Et £
1] 1] L] .
G(to,T) 2T . rag (1) 2t 4T (68)
0

Lransform will depend on ty: We have chosen =Y in the spectrum ot Fig. 3, which corresponds to the same

conditions as in Fig. 2.
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Using this technique we have calculated the sideband spectra for systems consisting of twe, four, and
ten energy levels, as functions of the propagation distance z and the laser electric field En. and for a
variety of functional torms for the incident pulse & _ (t') [8(al]. The energy levels or- as fallows: (a)
tvo-level system: The levels (niJR) = (U0J,J,) and L2151 »Jg1,Jy) . Our numerical results ror this case
appear to be in gualitative agreement with ghe previously publxshe¢ calcuiaticns of Eberly, Konopicki and
Shore [13). A quaantitative comparison is impossible, owing to the fart that the vertical scale indicating
the magnitude of the Fourier transform of G(t,,T) was onitted from their Figs. 2-4. (b) Four-level system:
the levels (nJR) = (0,0, J oJo), and (1,1,J,R) with J = J Jg £ 1. This system is an example of a general
family of systems with a comnon lower level, and in which ;he upper levels are not radiatively connected
among each other. OQur calculations reported in Ref. 8(a) are the first calculations of which we are aware
that treat the general problem of transient phenomena in pulse propagation in this type of system. Earlier
pulse-propagation calculations on a three-level system with a common upper level pumped by a transition
from one of the two lower levels addressed primarily the problem of gain on the transition that was not
pumped initially (23]. The published calculation of distortionless.pulse propagation in a three-level
system by Higginbotham et al. [24] actually assumed two ot the levels to be degeaerate, thereby eliminating
many of the effects we wish to investigate. The investigation of pulse propagation in degenerate systems
by Hopf, Rhodes and Szdke [25] concerned an ensembie of two-level systems, and not a truly multilevel
system of the type considered here. (c) Ten-level system: the levels (ntJR) = (O,O,JO,JO); (l.l,J,Jo)
with J = £ 1; (2,0, J J ). and (2,2,3,J ) withJ=2J, =2, ..., Jy *+2. This is an example of a
geaeral tyge gf energy-level schene 1n wh;ch each level wx?h vibrationa? quantum number n is connected
radiatively to several levels with n' = n* 1. Our results reported in Ref. 8 and in Figs. 2-3 here are the
first published calculations of pulse-propagation phenomena in such a systes.
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Figure 3: Pover spectrum of the field shown in Fig. 2. The units of the ve

and the resolution of the aumerical Fourier transform is 0.44 cm
taken as zero in Eq. (48).
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- Swept-gain superradiance in two- and three-level systems
-with transverse effects and diffraction (*)
! F. P. Mattar and C. M. Bowden (**) _ .
Acrodynamics Laboratory, Polytechaic Institute of New York, Farmingdale, New York 11735, U.S.A.
{**) Research Directorate, US Army Missile Laboratory, US Army Missile Command, Redstone Arsenal,
Alabama 35898, U.S.A.
:‘ Abstract. — Results of numerical calculations using computational methods developed earlier to efficiently treat

. transverse as well as longitudinai reshaping associated with single-stream and two-way pulse propagation and
" generation effects in cooperative light-matter interactions, using the semiclassical model, are presented. Specifically,

the results are presented and discussed for the two- as well as three-level system for a traveling excitation for both

» Gaussian and uniform gain distributions. Conditions are established for lethargic and highly nonlinear soliton

- Summary. — Computational methods based upon
.jj'xc Bloch-Maxwell semiclassical model were developed
~-arlier {1] to efficiently treat transverse as well as
s>ngitudinal reshaping and diffraction associated with
"ingle-stream and two-way pulse propagation and
" - eneration effects in cooperative interaction between
- ae radiation field and a medium consisting of a
. ‘allection of two-level atoms. Results of the calcula-
-on are presented for pulse evolution as a function
[ propagation distance Z in the two-level system for
traveling excitation with both Gaussian and uniform
. ain distributions with a classical initial tipping angle
[ “istribution. We present the conditions under which
[ 1¢ system evolves from a superfluorescent condi-
.- on (2}, where the atoms are contained within a
hr0peration volume, 10 an asymptotic steady-state (3]
- r sufficiently large propagation distance Z where
L Hliton behavior is exhibited. The steady-st~.ic condi-
r -on is interpreted in terms of the asymptotic behavior
L **the principal mode pulse area and stabilization of the
k\urepuheshape.mmgrcamthmtm
¢own to occur because of multiple pulse generat.on
7 ud self-focusing Furthermore, it is shown that
" fraction plays a much greater role in the results for
- ¢ swept-gain superradiance regime [3] than for the
; ndnions for which superfluorescence occurs [2].
». ¢ results of our numerical calculations for the
“ymptollc large Z regime are compared with the
} :e-dimensional analytical results for swept-gain
~ perradiance [3).

"o Work Jowtly sponsored by the Reseurch Corporation, the

‘L ‘mmd Divsion of Mobil Corporation, the University of

mml the US Army Ressarch Office, DAAG29-79-C-0148,
: ™ Office of Naval Ressarch, NOOO-14-80-C-0174, and Battelle
, lumbus Laboratories contract DAAG29-76-D-0100.
J
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pulse evolution through the asymptotic large Z regime.

The numerical code was extended (1] to represent a
collection of three-level atoms in the presence of two
laser fields, consistent with the usual parity conside-
rations [4, 5). Results are presented for traveling
excitation corresponding to optical pumping for both
Gaussian and uniform radial gain distributions and
several different temporal functions for the excitation.
Superfluorescence is shown to occur for conditions
analogous to those for the two-level case [1] ; however,
two-photon (coherent Raman) effects play a strong
role in pulse delay and shape characteristics, as
predicted from earlier analytical work [4, 5). Pulse
evolution characteristics are shown to depend upon
the excitation temporal function dependence and
radial function dependence as well as temporal
duration and total area.

We show also in this case the conditions under which
the system evolves to an asymptotic, steady-state
condition at sufficiently large Z in terms of the prin-
cipal mode pulse area and total pulse shape stabiliza-
tion. As in the case of two-level swept-gain super-
radiance, strong self-focusing and multiple pulse
generation is indicated.

Finally, results for simulton [6] behavior in the
three-level system is presented with two injection
signals and also with one injection signal (the optical
pump) and a uniform tipping angle (determined from
a thermal population distribution) which allows the
second pulse to evolve. The latter conditions cor-
respond most realistically in the large (7] region with
experimental conditions for swept-gain superradiance
reported in the literature [7, 8]. Results of the calcu-
lation are presented and compared with the experi-
mental data.

-
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ADAPTIVE STRETCHING AND REZONING AS EFFECTIVE COMPUTATIONAL TECHNIQUES
FOR TWO-LEVEL PARAXIAL MAXWELL -BLOCH SIMULATION *

FP.MATTAR ** and M.C. NEWSTEIN ***

Polytechnic Institute of New York, Brooklyn, NY 11201, USA

The methods, developed in gas dynamics, which make possibie the detailed calculation of the coherent interaction of
short optical pulses with s nonlinear active resonant medium are presented. This paper extends earlier work by giving a
rigorous and self-consistent solution of the coupled nonlinear Msxwell-Bloch equations including transverse and time-
dependent phase variations. In addition, the onset of an on-resonance self-focusing and beam degradation were predicted
in absorbers and in amplifiers. To accurately handle such severe energy redistribution, dynamic nonuniform computational
grids were found to be necessary. The selffocusing resuit agrees very well with a previous perturbation treatment and with
recent experiments in sodium, neon and jodine, whereas severe beam distortion, when rigorously addressing the problem of

transverse boundary, was observed in high-power lasers utilized in inertial fusion experiments. The formation of dynamic self-

action effects is due to the combined effects of diffraction and the inertial response of the active medium.

1. Introduction

When an intense laser beam propagstes through a
resonant active medium, the absorptive and dispersive
properties of the medium affect the shape of the laser
beam profile, thus altering the characteristic structure
of the medium [1-6]. This modified matter will then
reaffect the field profile. The resulting cross-modula-
tion of light by matter and matter by light is a con-
tinuous self-sustained phenomenon.

The current research was undertaken in an effort
to answer detailed questions relating to the coherent
exchange of energy, nonlinear phase distortion, and
beam quality in high-power laser transmission; the
method was chosen to develop a suitable theory and
realistic numerical computer code based on close col-
laboration with experimentalists [6—20]. It is
believed that real-life experiments would depart from
the predictions of previous plane-wave analysis as
sketched in fig. 1. The interplay of diffraction cou-

* Work jointly supported by F.P. Mattar, the Research
Corporation, the Intemnational Division of Mobil, the
University of Montreal and the US Army Research
Office DAAG29-79-C-0148.

** Aerodynamics Laboratories.
*#* Electrical Engineering.
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pling and the medivm response will inevitably redis-
tribute the beam energy spatially and temporally
[21-23]. This transient beam reshaping profoundly
affects a devics that relies on this nonlinear inter-
action effect.

This modeling encompasses self-phase modulation,
dynamic longitudinal and transverse reshaping, and
coherent energy exchange in an inertial medium.
Effective mathematical transformations which are
consistent with the physics make attainable a hereto-
fore unachievable solution [24—-29].

Light propagating in free space experiences diffrac-
tion spreading which alters the beam shape [30,31].
In the complicated nonlinear problem, the interaction
intertwines the various parts of the beam; the beam
transverse dimensions change drastically. As the trans-
mission distance increases from the launching aper-
ture, one is inevitably faced with substantial numeri-
cal difficuities. For example, a numerical paraxial
code using a uniform, radial grid can suffer a serious
drawback which would make the cost of the calcula-
tion prohibitive. The number of points required
would need to be increased tremendously if the tran-
sient beam undergoes severe self-divergence or self-
convergence. It is therefore imperative that the trans-
verse mesh be sufficiently small to correctly sample
the oscillations of the field amplitude and phase.
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Coheremt Pulse Propagation If, for self-focused beams, a fixed, transverse mesh
is used, there may be in the vicinity of the focal
L. Usual Theory £ region a lack of resolution as displayed in fig. 2. A
10Im. T 8l nonanegligible loss of computational effort in the
* wings of the beam also occurs. In an effort to main-

‘Uniform Plane Wave' ————t

iL. Usual Experiment ¢

= Qiy) S gtoster

‘Gaussian’ ’

Fig. 1. The state of the art in coherent pulse propsgation is
displayed. The theoretical effort was restricted to & uniform
plane wave prior to the work of Newstein and colleaguss;
whereas the usal experiment was carried out using s Gaus-
sian besm. To simulate & uniform plane wave, the detector
dismeter was selected as small as possibie witen compared
to the Gaussian beam diametir.

Fig. 2. (s) Isometric representation of the besm cros-section
8 it experiences seif-focusing: The crom-section decreases as
s function of the propagation distance; (b) An isometric dis-
play of the time integrated fleld energy ss & fuaction of o and
0 to Hlusteate the resolution limitation associsted with uni-
form megh.

tain accuracy and efficiency, the governing equations
were integrated using a simple coordinate transforma-
tion which was revised at suitable intervals to sllow
the numerical grid to follow the pulsed-beam buhav-
jor. The mesh network will expand or contract
accordingly.

The interdependent nature of each aspect of the
problem requires 2 thorough comprehension of the

Ad=1.28

N\

Fig. 3. Two-dimensional prescribed rezoning for p and n. As
the beam narrows the density of transverse points and the
transmisgion planes increass imuitaneously.




Fig. 4. Self-adjusted two-dimensional rezoning for o and 9 to
follow more closely the sctual beam characteristics. The (nor-
malizing) Gaussian reference beam is redefined during the cak
culation.

televant physics. In setting up variable grids there is
an important factor to be considered: one must
address ariy transverse energy distribution while ana-
lyzing the longitudinal alterations (figs. 3 and 4).If a
variable longitudinal mesh, A7, is introduced without
carrying a variable, radial mesh, Ap, t0 handle large
increments along the direction of propagation, one
inevitably faces a steadily decreasing A step as the
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beam starts to break up. This effect will intensify to
such an extent that An crashes to an increasingly
smaller value and the calculation must be discon-
tinued.

It is noteworthy that the choice of Anand Ap is
restrictively subjected to the definition of the Fresnel
aumber [65]. The smaller the Fresnel number the
smaller must be the ratio [An/(Ap)?] so that the
numerical instability criterion obtained by linearized
theory, is always satisfied.

Besides the coordinste modification, a change in
the dependent variables is introduced in tems of
renormalizing factors (such as the reference beam
waist, wave-front curvature and field amplitude) to
extract the radial dependence of the phase front and
any important source of amplitude variation. As a
result of the phase factorization, the new dependent
functions vary more gradually in the new coordinate
system: what one calculates, therefore, is a deviation
from s reference Gaumian beam. As soon as the local-
ized computational mesh departs significantly from
the physical beam waist, the renormalization proce-
dur. is refreshed using pertinent moment properties
of the physical quantities. Thus, the grid can be
coarser, less extensive and more efficient.

Another msjor obstable is the cumulative memory
effect in the response of the medium to the laser
beam. For computational efficiency, the temporal
grid will be nonuniformily stretched as indicated by
either curve in fig. 10. In such an involved computa-
tion the calculational efficiency of the algorithm is of
crucial importance. A brute force finite difference
treatment of the governing equations s not feasible.

The adoption of nonuniform meshing techniques
defined in connection with aerodynamics problems
has proven to be very foresightful. These numerical
methods, designed by Moretti [25-29], discriminate
between different domains of dependence on differ-
ent physical parameters; a higher degree of accuracy
in the actual physical problem thus became feasible.

2. Physical background

The grest interest in understanding the transmis-
sion of intense ultra-short pulses through a non-
linear medijum is due to their application in laser-
induced energy release via fusion of hydrogen iso-
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top::.cm"l'luul pulasu(ommodm tobesom:hatno -iFVk+a§/an=?, ’ m
app e pumping (or other energy-exc pro- -
cetses) can occur during the puise. The resonant me- 31 =eW - (A0 +1/r1)? @
dium is thus lef? in a state of nonequilibrium after the and
pulse passes. When designing high power laser sys-
tems, one must verify that no beam distortion could AW[ar = -1/2(e*P+ P%) — (W - Wo)iTy , ®
evolve. Any departure from the desired uniform illu- where

i f uld t
mination of the target could prevent the fusion mech- € = Qulh) 1ye’ and Pa@)?’,

anism from taking place. One controls the cumulative
interplay of beam diffraction with the medium inertia
to avoid triggering the onset of any substantial self-
actioa phenomena.

This model iz readily deduced from the Maxwell—-
Bloch equations while taking into account the mutual
influence of the transient beam and the resonant two-
level atoms. The intense traveling electric field is
treated classically, whereas, the two-level system is
analyzed quantumn mechanically. In particular, the
medium response is described using the density
matrix formalism [6,31]. None of the simplifying
approximations (such as adiabatic following [17], or
rate equation [18]), is introduced; instead an exact
self-consistent aumerical approach is developed.

This first nonplanar study simulates more accu-
rately the experimental coafigurations than the pre-
vious restrictive one-dimensional theoretical attempts.
The model takes into account the interplay of diffrac-
tion, time-dependent phase, nonlinear atomic inertia
and initial matter and field boundary conditions.

This modeling, evoived from 2 close collaboration
with various experimentalists, can lead to a better
understanding of the basic cooperative effects in
light-matter interactions. Extensions of this study
may also help select optimum design configuration
for superfluorescence {38—43], optical bi-stability
{4147}, and double coherent transients [48—-52].
Further benefits may include the development of new
methods to generate ultra-short pulses as required for
optical information transmission and optical commu-
nication.

3. Equations of motion

In the slowly varying envelope approximation the
dimensionless semi-classical field-matter equations
(6,22,23] (which describe our system in a cylindrical
geometry with azimuthal symmetry), are:

E = Refe’ exp{i((x/c)z - wi)} ];
with
kfe=w

and

19 )]
Vie 'a—p'(na?)].

after applying L'Hopital’s rule, the on-axis Laplacian
reads:

Vie =23%/30% ;
and
P=iRe[? exp{i((x/c)z-xt)} ] .

The complex field amplitude e, the complex polariza-
tion density 7, and the energy stored per atom W, are
normalized functions of the transverse coordinate
p =r/ry, the longitudinal coordinate n = zayy, and
the retarded time r = (¢ — zn/c)/r,,. The time scale is
normalized to the input pulse length, 7, and the
transverse dimension scales to the input beam spatial
width 7,,. The longitudinal distance is normalized to
the effective absorption length {7}, (azsr) ™, where
wulN
Qqrr ’[ :h " ]fp ~ [=a'rp] @)

here, w is the angular carrier frequency of the op-
tical pulse, u is the dipole moment of the resonant
transition, V is the number density of resonant mole-
cules, and » is the index of refraction of the back-
ground material. The dimensionless quantities Ao =
(w ~ wo)tp, 7y % T /7y, and 7; = T3 /7, measure the
offset of the optical carrier frequency w from the
central frequency of the molecular resonance wy, the
thermal relaxation time T',, and the polarization
dephasing time T',, respectively.

Even in their dimensionless forms, the various
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quantities have a direct physical significance. Thus ?
is a measure of the component of the transverse oscil-
lating dipole moment (? has the proper phase for
energy exchange with the radiation field). In a two-
state system, in the absence of relaxation phenomena,
a resonant field will cause each atom to oscillate
between the two states, W= —1 and W = +1, at a Rabi
circular frequency fx = e/, = (u/h)e’. Thus e mea-
sures how far this state-exchanging process proceeds
in a fwhm pulse length 7,

The dimensionless parameter, F, is given by F =
A(aerr) ™! [(4nr2). The reciprocal of F is the Fresnel
number associated with an aperture radius 7, and a
propagation distance (asr)~!. The magnitude of F
determines whether or not one can divide the trans-
verse dependence of the field into “pencils”, (one per
radius p), which may be treated in the plane-wave
approximation. The diffraction coupling term and the
nonlinear interaction terms alternately dominate
depending on whether F> 1 or F<1.

As outlined by Haus et al. [19], the acceptance of
eq. (3), as describing the coupling of the material to
the electric field, implies certain approximations.

Eq. (3) shows that the product e P of the electric
field, e, and the polarization, ?, causes a time rate of
change of the population difference (i.e., in medium
energy) leading to saturation effects: inertial effects
are considered.

4. Energy consideration

From the field-matter relations (1)—(3) one ob-
tains the energy current equation:
+iF Vy(eVye® — e*Vre) + 3, = (e* P+ e?*),
V-l'-—2[3,W+(W- WO)/T]] N (5)

where, using the polar representation of the complex
envelope, we have

e = A exp[+i¢] , ©)
J,=A? m
and

Jr = 2FIA? 39/3p . ®)

The components J, and J7 represent the longitu-
dinal and transverse energy current flow. Thus, the

1
i

e e e w v
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existence of transverse energy flow is clearly asso-
ciated with the radial variation of the phase of the
complex field amplitude e. When Jy is negative [ie.,
9¢/3p > 0], self-induced focusing dominates diffrac-
tion spreading. Since 3¢/9p determines the direction
and speed of energy flow, it is reasonable to monitor
either a phase gradient or the transverse energy cur-
rent for a central diagnostic as the calculation pro-
ceeds.

One may rewrite the continuity eq. (5) in the labo-
ratory frame to recover its familiar form:

V-J=--a-[2W+ z A*]-zw‘%. Q)
or €T, (4

pet! T

$. Outline of numerics

The retarded time 7 refers to the actual arrival
time in a stationary frame of the front of the pulse at
the position z. This coordinate transformation, from
t to 7, fig. Sa, allows an accurate numerical scheme to
be developed for which the increment in n and 7 need
not be related in any special way.

Herein, the equations of motion are solved in the
near-field region of an optical pulse, initially Gaussian

eT
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Fig. 5. Graph (a) displays the retarded time concept;

(b) outlines the numerical approach: a marching problem
along n for the field simultaneously with a temporal up-
grading of the material variables along r.
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in both p and r. This amounts to a mixed initial
boundary-value problem. The initial configurations of
the laser beam and the resonant medium are specified
subject to certain conditions for r > 0 which must be
satisfled at all space points. Furthermore, the field
boundary condition at n = 0 is time-dependent. See
fig. 5b. For the numerical solution, a temporal-spatial
mesh of grid points is used to represent the pnr space.
At a given plane 7, the values of the various depen-
dent variables are obtained for all stations. This is
repeated until the desired propagation length has
been traversed.

The basic numerical algorithm consists of a com-
bined explicit/implicit method. The MacCormack
[24] two-level predictor~corrector, nonsymmetrical
finite-difference scheme is used to advance the field
equation along the direction of propagation, n, while
the modified Euler three-level, predictor—corrector
scheme is used to update the material variable in
time-tetarded time r. The mutual light-matter influ-
ence is a mixture of a boundary value (for advancing
the field) and an initial value problem (for calculating
the atomic responses) [9]. To improve accuracy and
speed up convergence, cross-coupling is accentuated.
With such steps, the scheme becomes as flexible as 2
strongly-implicit algorithm. The final field value,
rather than the predicted one as done classically
(6—10, 25, 20, 221, is used to correct the material
variable, and the final material values instead of the
predicted ones are used to correct the field. The
final variables are obtained as solutions of a set of
five, simultaneous, algebraic equations.

6. Details of numerical procedure

An outline of the numerical method is fllustrated
using two simplified equations that are representative
of the full set describing the propagation and atomic
dynamics effects. Here, the material variables are
denoted by M; either of the electric field variables is
denoted by F. Both variables are complex quantities
which are functions of the propagational coordinate,
1, the trangverse spatial coordinate and r, the
retarded time. With M,, the equilibrium value of M,
one can write the representative equations as:

aF
~iVFegom M, @3)

with

19 [ oF
ViF =2 {37 (p 8—;)}' (e2)]
Yo remom,, as)

subject to the initial and boundary conditions:

1. for r 2 0: F =0, M = M, known function to take
into account the pumping effects;

2. for n =0: F is given as known function of 7 and p;

3.for all nand r: [0F/3p] a9 and [3F/3p] PO max
vanish, with o, defining the extent of the
region over which the numerical solution is to be
determined).

The derivatives in (23) appear only with respect to
space variables; time enters only implicitly, through
the right-hand side temms. Conversely, the derivative
in (25) is a time derivative only, and the space influ-
ence is provided by the right-hand side terms. Thus
the equatin can be considered as somewhat vncot-
pled and ssparate integration procedures ate adopted.
We cannot be sure that the accuracy of the integra-
tion procedure is of the second order in An and Ap as
well as in A7 for the material variables, and similarly
for the fleld variable with respect to Ar. This algo-
rithm uses the two-level nonsymmetric, MacCormack
explicit predictor~corrector finite difference scheme
for marching the electric field F along n and the
three-level modified Euler scheme to integrate along r
the material variables. To ensure second-order accu-
racy in all space and time increment steps simulta-
neously for all the dependent physical, field and
material variables, the final field F instead of the pre-
dicted F is used to evaluate the final M; and the final
M instead of the predicted M, to correct the field vari-
able F. For simplification a quasi-linearization (see
Moretti’s treatment of the chemical kinetics problem
[26]) is introduced as follows:

FM = ~FM; + FM + FM; , (26)

where i means the “initial value™ and can reasonably
be denoted by the predicted values. This approach
follows readily the Taylor expansion of the product
FM:

FH = @3 +| = o) - )
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a
"‘[5;'! (FM)]‘(M -M)+... ea)

truncated at first-order terms.
Mathematically, this algorithm reads as follows:
with

FGAn, mAp, k At)= Flpy, (28)
LF =i VAF = (i/p){3/3p(oF)} , (29)
the predicted field can be written as:

Bo) =Flp o+ An[Mip - LTMp ), (30)

whereas the corrected field reads as follows:
Fitk=} (Pl Pk + noak - LPRRY)),
@31)

L¥ and LB are the forward and backward differ-
encing of the transverse Laplacian operator cylindri-
cal coordinates with azimuthal symmetry.

The material variables are integrated in the follow-
ing manner. The predicted values are defined as:

Bheor = Moy 4 2 A7 [FRiMml —~ Mk + Ml
’ (32)
while the corrected values are given by:

ks = % (Mln‘:lk + ﬂp;’kﬂ) +Ar{(- ﬁp;,lk+lﬁn:,lk*l)
+ F’n:llﬂ'l-ﬂn:lkﬂ + ﬁn{‘kﬂ”n’;'kﬂ
{1 AR A) (33)

Rearranging, one has

Pk =ay + by Pk + @Mk (34)-

Moy =az + baFinky + @M ker @3s)

which is a set of linear algebraic equations that can
readily be solved by straightforward elimination.

The numerical code has been tested systematically
by insuring the reproduction of analytical resuits of
problems such as free-space propagation {31]; Gaus-
sian beam propagation through lenselike media [32],
Bloch’s solution at the input plane for an on-reso-
nance real field [6] and coupled uniform plane-wave
calculations for an input 27 hyperbolic secant
[6—11]. Identical results were obtained solving these
problems expressed in the eikonal and transport
form [1], and the three-dimensional results have been
compared qualitatively and quantitatively with an
analytic perturbation in the reshaping region [22,40].

7. Importance of boundary conditions

When the laser beam travels through an amplifier,
the transverse boundary has an increasingly crucial
effect in contrast to the absorber situation. The laser
field which resonates with the pre-excited transition
experiences gain; whereas, the laser field which
encounters a transition initially at ground state, expe-
riences resonant absorption and losses. A more signifi-
cant portion of the pulse energy is diffracted out-
wardly in the amplifier than in the absorber [23].

In resonant, nonlinear, light—matter interactions,
the velocity profile is not uniform across the beam.
The intensity at a particular radius as well as the ini-
tial state of the transition dictates the distinct delay/
advance that the “pencil” will experience at a partic-
ular radius. Consequently, these boundary reflection
conditions tend to play s substantial role in the am-
plifier calculations and could obscure the emergence
of any new physical effects. Hence, acceptable results
are achieved only by carefully coupling the internal
points analyze . with the boundary points [27].

Special car: is required to reduce the boundary
effect to a minimum. By using nonuniform grids and
confining the active medium by radially-dependent
absorbing she.ls one can construct an effective,
relisble algorithm, locally consistent with the physics
of the problem: i.e., the boundary condition to be
discussed below is an absorbing surface. This condi-
tion represents an actual experimental approach in
which the laser amplifier is coated to circumvent any
spurious reflections.

Mathematically, this approach is implemented by
introducing a radially-dependent loss distribution.
The loss coefficients obey a Gaussian-dependence
peaking at the wall itself. Three forms of loss were
studied: Ohmic linear form, cubic Kerr loss, and
reduction in the nonLnear gain of the active medium.

For strongly amplifying media, the transverse
boundary could still cause computational difficulties
for self-diverging beams, because it is difficult to
select, beforehand, the functional location of the
boundary. An alternate approach to the problem
would be to extend the transverse grid to infinity as
displayed in fig. 6. In practice, the most effective
treatment of the dynamic, transverse, boundary con-
sists of implementing an absorbing surface while con-
currently considering an infinite physical domain and
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Fig. 6. (2) Non-uniform stretching of the transverse coordinate; (b) Contrast the Gaussian beam dependence with the noa-uniform

physical radfus,

mapping it on a finite computation region.
Hence, the desired transfonnation process for the
transverss coordinate is:

§ = tanh(fo) , 0<§<1, Ng>N,, (36)

i'(k"l)/Na» l<k<NBn (37)
PIREPTA R 38)
AT 5L )
o (2‘,) s 5) . @9
witt, . .
__ 1 [LeEvy
b= o i = eam]’ 40y

with o(V,) denoting the actual maximum radius
whers the active medium is still present. In the region
extending from o(V,) to o(Vp) there is no ampli-
fying medium; instead, there is an absorbing layer.

The mapping derivatives can also be defined ana-
lytically as follows:

3E/3p = f(1 - £*) = § sech?(8p) (412)

PR W S GHY TP SR U SP0 U W G-

and

R = 2841 - 1) (41b)
on axis:

Vhot oo (@1c)
The diffraction coupling term becomes:
-t K, #19)
with the on-axis contribution

[Vielpeo -%—3 (:_:), *,“‘.“0:7 (:e‘p)gf

In fig. 7, the a3t and second radial derivatives and
the Laplacian term are drawn. Fig. 8 contrasts in the
stretched radial coordinate system, the transverse
coupling and the electric field.

When using the above, the numerical domain sen-
sitivity and the dependence of the physical param-
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oR/dp

FIRSY WEIGHTING STRETCHING FACTOR

2nd WOIGHTING  STRETOING FACTOR

UNIORM MATHEMATICAL RADIUS - R

Fig. 7. This graph illustrates the dependence of the radial
mapping and the derivatives on the different parameters
versus the uniform mathematical radius.

eters on the boundary conditions can readily be
assessed.
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Fig. 8. This figure contrasts the Laplacian dependence for a
given Gaussian profile for various non-uniform radial point
densities.

8. Prescribed stretching

Proper handlinz of the differential equations of
motion is possible provided there are enough mesh
points to insure adequate resolution where phase gra-
dients change very rapidly. However, to keep the
computing costs at a minimum a nonuniform grid is
used.

It is defined by widely-spaced computational
nodes in the area most distant from the plane of
interest and densely clustered nodes in the critical
region of rapid change; the latter being in the neigh-
borhood of maxima and minima or, for multi-dimen-
sional problems, in the vicinity of saddle points.

Consequently, resolution is sought only where it is
needed. The costs involving computer time and mem-
ory size dictate the maximum number of points that
can be economically employed. In planning such a
variable mesh size, the following [28], must be kept
in mind:

{a) The stretching of the mesh should be defined
analytically so that all additional weight coeffi-
cients appearing in the equations of motion in
the computational space, and their derivatives,
can be evaluated exactly at each node. This
avoids the introduction of additional truncation
errors in the computation.

(b) To assure a maximum value of AT, the mathe-
matical grid step, the minimum value of A7, the

PP S A W YD S W ST 8
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physical time increment, should be chosenat
each step according to necessity. This means that
the minimum value of Ar must be a function of

the pulse function steepness.

(¢) The minimum value of Ar should occur inside
the region of the highest gradient which occurs
near the pulse peak.

For example, following Moretti’s approach, if T=
tanh(ar) (422) and « must be larger than 1, the entire
semi-axis 7 greater than zero can be mapped on the
interval 0 < T <1 with a clustering of points in the
vicinity of 7 = 0, for evenly-spaced nodesin r.

This mapping has several advantages. It introduces
into the equations of motion new coefficients which
are defined analytically and have no singularities. It
avoids interpolation at the common border of meshes
differently spaced. The computation is formally the
same in the ‘7" space as it was in the 7 space. Some
additional coefficients, due to the presence of the
stretching function, appear and are easily defined
by coding the stretching function in the main pro-
gram. By a proper choice of the function and by
letting some parameters (such as &, above) vary as
functions of the propagation distance according to
physical needs, the accumulation of points can be
obtained where necessary at apy distance of propa-
gation. In the laser problem, we use a slightly modi-
fied stretching function:

rer @I -T) - (42b)

where a is a stretching factor which makss points
more dense around 7., the centre of gravity of the
transformation. In particular,

&= Tuindowll08Nyp = 2) “3)

with N, is the number of uniform points in the
mathematical grid, and Tyipgow is the temporal win-
dow

Twindow ® (Tmax = Tmin) » (44)

7. i3 an arbitrary point used to define the centre of
transformation so that the change of the coordinate
will be optimum for more than one plane along the
directioa of propagation. Fig. 9 illustrates the trans.
formation and its different dependence on the par-
ticular choice of its parameters.

Note that a derivative of the mapping function
produced by the gradual variation along the ‘7" axis is
also defined analytically, namely 37/0T =
(@/2)(T(1 - T)] ™ (44b). In response the computa-
tional grid remains unchanged while the physical grid
(and the associated weighting factors) can change
appreciably.

Should one need ta study the laser field build-up
due to initial random noise polarization (for super-
radiance), or to an initial tapping angle (for super-

Fig. 9. Dependence of prescribed stretching and its derivatives on the point densities and the centre of transformation.




PR
..L..

s ot i OB e

T

F_P. Mattar, M.C. Newstein [ Adaptive stretching and rezoning 149

fluorescence), one must utilize a different stretching
[66]. This stretching is similar to the one defined for
treating radial boundary conditions. The mesh points
are clustered near the beginning (small 7); their den-
sity decreases as 7 increases. Note that the Fresnel
number for the super-fluorescence simulation was
selected to be one {66], in accordance with present
experiments.

9. Adaptive stretching in time

As the energy continues to shift back and forth
between the field and the medium, the pulse velocity
is modified disproportionately across the beam cross-
section. This retardation/advance phenomenon in
absorber/amplifier can cause energy to fall outside
the temporal window. Furthermore, due to nonlinear
dispersion, the various portions of a pulse can propa-
gate with different velocities, causing pulse compres-
sion. This temporal narrowing can lead to the forma-

Eir

tion of optical shock waves. The quality of the tem-
poral resolution becomes critical. To maintain com-
putational accuracy a more sophisticated stretching
than that described in section 8 is needed. The accu-
mulation centre of the nonlinear transformation used
to stretch the time coordinate should be made to vary
along the direction of propagation. This adaptive
stretching will insure that the redistribution of mesh
points properly matches the shifted pulse (fig. 10).
Here the transformation (42) from 7 to T is
applied about a centre 1, which is a function of n:

r=1{n)+ glog 45)

1-T°
The stretching factor a could also be a function of n
(fig. 19b) with

T+ An) =1(n) + [1p(n) — Tp(n — AM)],  (46)

where 7p,(n) is determined from the previous plane
as the time at which the electric field on axis is
maximum, The time delay/advance accumulated in
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- the interval An
h At = 75x(n) - Tpiln An) @7 g
s measures the velocity of the peak relative to the
BN speed of light:
\ vic = 1/[c(Ar/An) + 1] . (@8)
: The equations are very similar to those of section
3, with an extra term added: f
de[ 3T] dr.
i - — =P, 49
-:F%.Hane*;;[ arl,, dn ? (49) :
The role played by the time coordinate is different. B —
Previously the field equation did not contain an expli-
citly dependent term. .
10. Rezoning

The main difficulty in modeling laser propagation
through inhomogeneous and nonlinear media stems
from the difficulty of preassessing the mutual influ-
ence of the field on the atomic dynamics and the
effect of the induced polarization on the field propa-
gation. Strong beam distortions are expected to occur
based on a perturbational treatment of initial trends.
One must normalize out ths critical oscillations to
overcome the economical burden of an extremely
fine mesh size. To insure such accuracy and speed in
the computation, a judicious choice of coordinate
system and appropriate changes in the dependent

Fig. 11. (2) The concept of the prescribed rezoning; (b) a
close-up of the non-uniform mapped grid of fig. 2b.

variables, which can either be chosen a priori or auto-
matically redefined during the computation, must be

sian beam propagating in a vacuum. Using Kogelnik
and Li’s notation [30], the Gaussian solution of the

considered (fig. 11) [33-37]. free-space (P = 0) equation
This procedure removes the necessity for sampling
the high frequency oscillations induced in the phase 2i3pe + Ve =0 (50)

by seif-lensing phenomena. The coordinate transfor-
mation alters the independent variables and thereby
causes the dependent variables to take a different
functional form. The new dependent variables are
numerically identical to the original physical ampli-
tudes at equivalent points in space and time.

The requirements of spatial rezoning will be satis-

is well known and may be written as:

e(p,n, ) =a(n. 7)™ exp {W(n. 7)

1 ikn
B p:(c’(n. " R, f))} ' ¢n

r fied by simultaneously selecting a coordinate trans-

3 formation (from the original coordinatespandntonew °  where

v coordinates § and z) and an appropriate phase and

b amplitude transformation. The chosen transformation ¥(n, 7) = arctan(n/ka3) , (2)
4 will share the analytical properties of an ideal Gaus a(n, 1) =adg sec ¥ , (53)
l®
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R(n,7)=ncosecy . (54)

The parameter g is the measure of the transverse
scale, and

ag =a(0, 1) (55)

is the width of the initial intensity distribution. The
parameter a shrinks or expands as the beam converges
or diverges. It is logical to require the transverse mesh
to vary as g varies. Therefore, the variable

g§=pla(n,1) (56)

is introduced (fig. 11). More specifically, stability and
convergence are assured if the ratio [An/(A0)?] is
appropriately defined, according to the Fresnel num-
ber chosen, and kept constant throughout the calcula-
tion.

Accordingly, one must introduce a new axial vari-
able z so that this parameter automatically remains
constant as p varies. This should increase the density
of 1 planes around the focus of the laser {ield where
the irradiance sharply increases in magnitude causing
a more extensive and severe field-material interaction
to occur. This is accomplished by introducing

z=y (57

and using a constant Az. This has the effect of
making the extent of real space related to the size of
the vacuum beam.

In terms of § and z the field equation now appears
as

1
—— [2i 3,¢ - 2if(tan z) 3pe + Vel =ic, , 58
a,(z)[:exs();e nel=ia (58)
where ¢, is 2 constant.

For the field and polarization envelopes, the vari-
ables B and S are defined as:

{;} = [a5! cos z]{g} exp [ﬁ 22-3 tanz - iz] ) (59)

The quadratic phase and amplitude variation have
been removed. The new field then takes the form:

{1/a*()} [213,B + VB + (2 - §*) B] =ic,S. (60)

B and S vary more slowly in their functional values
than their predecessors allowing the numerical proce-
dure to march the solution forward in a more eco-

nomical fashion by using larger meshes. They are
numerically treated in an almost identical fashion to
e and 7., Strongly nonlinear media require, however,
a more sophisticated approach.

11. Adsptive rezoning

The foregoing concepts may be generalized by
repeating the simple coordinate and analytical func-
tion transformations along the direction of propaga-
tion at each integration step. The feasibility of such
automatic rezoning has been demonstrated by Her-
mann and Bradley in their CW analysis of thermal
blooming [33] and by Moretti in supersonic flow cal-
culations [28,29].

In particular, the change of reference wavefront
technique consists of tracking the actual beam fea-
tures and then readjusting the coordinate system. An
adaptation of Hermann and Bradley’s technique to a
cylindrical geometry is presented herein.

The new axial coordinate = is defined, as before, as

z = arctan{nfka}) | 61)
and A
3z = (1/ka®) . (62)

Previously, the centre of the transformation where
the radial mesh points were most tightly bunched,
was at the focus (z = n = 0), Now the transformation
will be defined in terms of an auxiliary axial variable
2 as a function of z, which is calculated adaptively
in a way that reflects and compensates the changing
physical situation. The relationship z¢(2) will be

defined later in this section.
The radial coordinate £ is then defined similarly as
E=plagGze) (63)

with an auxiliary axial coordinate z; different from z.
For stability reasons, (Az;/A?) must be a constant.
From

= v ' (64)

this leads to:

ay(zg) = aggfcos 2y, (65)

dn = ka3 [tan(z + dz) - tan 2] (66)
= kad;[tan(z + dz;) — tan 5] , 67)
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which gives:
32y =a*laf, (68)
and also leads to an expression for dz:
tan(dzy) = a*tan(dz)/ {af + tan(dz)
x [a*tan z; - aftan z]} . (69)

This enables one to find appropriate values for a/a;.
oy is then defined by writing:

ag(zy + dzy) = agg/cos(zg + dz) . (70)
In this adaptive rezoning scheme, the physical solu-
tion near the current z plane is described betterby a
Gausian beam of neck radius ago whose focal point is
a distance z; away than by an initially assumed Gaus-
sian beam with parameters g, and z. With this trans-
formation the field equation (50) in terms of z and §
becomes

2i 3. +5—:— (Vhe - 2if tan 2Qge)] =icley?.  (71)

To removs the unwanted oscillations, new dependent
variables B and S are introduced by e = GB and P =
GS, where

G=a; exp{ % £tan z; i:‘} . (72)
All the values at the end of the previous interval

(n plane) are indicated with a subscript p. The electric
field e is given in the old representation ase = G,B,,

and ia the new representation as e = GB; where G, is
dependent on 2y, and G on zy, and B is given by

By =B expl+i(at® + 5¢*)] . (73)

The best match is obtained by requiring that ¢(3),
the phase of B, thould vary radially as little as possi-
ble.

#(@B) = 9(Bp) + #(Gp) - ¥(@)
=(af? +88 + )+ (J8Panzy - z)
- (Fuanzgzy,

where a is the curvaturs.

a and § are determined in a appropriate manner
from B, so that 2 new variable 8 has no curvature. It
is clear that the new value of z; at the present new
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plane under consideration is derived from the old
value by

Zg s arctan(Qa + tan zy,) , (75)
with the new neck radius ao;

Gog = age0s 2y (76)
The equation for B is then:

20845 (Mo +-B)8) =S, ()

By using this final differential equation, the new
equation varies /ess in its functional values than does
the original.

The instantaneous local parameters a and § of the
quadratic wave front are determined by fitting the
calculated ¢(£) of B, to & quartic in &; a reasonable
approach is that the intensity-weighted square of the
phase gradient: .

[B3 (3,008 + 88 + Y)]? § dt = minimum,  (78)
where ¢ is the phase of the fleld variable 8= 4
exp(—1y) [79]. The minimization of the phase gra-
dient is weighted by the beam intensity. Conse-
quently, the curvature at the highest intensity portion
of the beam contributes the most.

The following different moment integrals are
introduced

My= (878} £dt,  vu= [(BOVa0} ek,

(80)
using the relation
B*3y = -Im(B*3:8} , . (81)
7= —Im [ (B*3:8) £2"~V} £ dt, (82)

by taking partial derivatives with respect to the o's
and f’s, one obtains

a=<Myy; - Ma1)/E
and

B=M7a ~ My7\)I2E,
where

E=2M} - M\M3) . (83)
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The distinctive advantage of these stretching and
adjustable rezoning techniques stems, as suggested by
Moretti, from the fact that they automatically define
the mapping and all related derivatives analytically.

12. Numerical results

In this section are outlined basic results, obtained
with and without rezoning and stretching, and illus-
trating why the more sophisticated techniques
required less computational effort.

The first part of this investigation which dealt with
absorbing material led to the discovery of new physi-
cal phenomensa which promise to have significant
applications for proposed optical communications
systems. It had been shown that spontaneous
focusing can occur in the absence of lenses, and that
the focusing can be controlled by varying the medium
parameters. The second part of this analysis dealt
with amplifiers.

The dependence of the propagation characteristic
on the Fresnel number F~! associated with an effec-
tive atomic length, on the on-axis input pulse “area”,
on the relaxation times and on the off-line centre fre-
quency shift have been studied. Furthermore, partic-
ular care was exercised to ensure a perfectly smooth
Gaussian beam [23,54—59] thereby eliminating any
possibility of small scale self-focusing build-up
[60—63].

The effect of coherent self-focusing is llustrated in
fig. 12. The time integrated pulse ‘energy’ per unit
area is plotted for various values of the transverse
coordinate, as a function of the propagation distance.
Two orientations are shown to display the energy
redistribution as the laser beam is transmitted in the
nonlinear resonant absorber. The necessity of a non-
uniform mesh is quite evident.

The three-dimensional numerical calculations
[23, 56-59] substantiate the physical picture based
on time changes in the phase. It can be perceptually
visualized in selected frames from & computer movie
simulation of the numerical model output data.

In fig. 13 the isometric plots are drawn against the
retarded time for various transverse coordinates at
four specific regions of the propagation process:

(a) the reshaping region where the perturbation treat-
ment holds; (b) the build-up region; (c) the focal

Fig. 12. The energy per unit ares {/§ie(p, 0, +)i2dr} the flu-
ency is displayed as a function of the distance in the direo
tion of propegation for various values of the coordinates
transverse to the direction of propagation. To illustrate the
gradual inward energy flow the »/2 reorientation is also dis-
played. The longitudinal orientation illustrates the gradus:
boosting mechanism that the field energy experiences as it
flows radially towards the beam axis (while n increases). The
second angle displays the severe beam distortion in its cross-
section as a function of n.

region; and (d) the post-focal region. While in fig. 14
a rotation of isometric plots is displayed to emphasize
the radially dependent delay resulting from the
coherent interaction. Positive values of the transverse
energy current correspond to outward flow and nega-




T Yrr'r
r

vy

g~

Y e
. '

L R AL AR AL DB SR o e 2N0

e it
-

Lt oo oae Nk ol uRe MU ssaer aems ay P— w

]

154 F.P. Mattar, M.C. Newstein | Adaptive stretching and rezoning

Fig. 13. Isometric plots of the absorber fleld energy and transverse energy flow, against the retarded time for various transverse
coordinates at four regions: (a) reshaping, (b) build-up region, (c) focal region, (d) post-focal region.

tive values to inward flow. The resuits of the top two
graphs in the right and left columns are also in agree-
ment with the physical picture related to the analytic
perturbation discussed elsewhere [23,65].

The burn pattern, iso-irradiance level contours
(against 7 and p) for different propagation distances
are shown in fig. 15. Severe changes in the beam

cross-saction are taking place as a function of the
propagating distance. At the launching front, the
beam is smooth and symmetric; as the beam propa-
gites into the nonlinear resonant medium the effect
of the nonlinear inertia takes place.

The general format for presenting three-dimen-
sional coherent pulse propagation in an amplifying
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Fig. 14. Isometric plots of the absorber field energy and transverse energy flow profile for various time slices at the four regions of
interest.

medium will be the same as for the absorber. regions of propagation and are constrasted with their
In the right hand side of fig. 16 the field energy is profile plotted in the left hand side of fig. 16 for

displayed isometrically against the retarded time for various instants of time. In fig. 17, one can see from'

various radii at the previously defined five critical the contour energy levels that the peak of the pulse is

rﬁ. "' 'T-
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Fig. 15. Absorber field energy contour plots for the four propagation regions of interest. Notice the temporal delay asociated
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Fig. 17. Amplifier field energy contour plots for the four propagation regions of interest. Notice the temporal advance associated
with the coherent exchange of energy between light and matter, as well as the beam cross-section narrowing.

advanced with respect to a frame moving with the figs. 18 to 20. Nonuniform radial stretching was

velocity of light. It is seen that the smaller area adopted during the computation. Isometrics of the

propagates slower than the larger areas. field energy and the energy current are plotted ver.
The effect of the radial boundary is illustrated in sus 7 for different radii in fig. 18 and versus p for

Fig. 16. lsomuric— plots of the amplifier field energy versus the retarded time for various transverse coordinates contrasted to its
profile for various time at distinct propagational region.
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Fig. 18. Isometric plots of the ampilifier fleid energy and transverse energy flow, against the retarded time for various transverse
coordinates at four regions: (a) reshaping, (b) build-up region, (c) focal region, (d) post-focal region, with stretched radial coordi-
nate for proper accounting of the transverse boundary condition.
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. Fig. 19. Isometric plots of the amplifier field energy and transverse energy flow profile for various time slices at the four regions
of interest, with stretched radial coordinate for proper accounting of the transverse boundary condition. No severe reflection or
abrupt variation in the field energy, at the wall boundary, is observed.
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Fig. 20. Amplifier fisld enargy contout piots for the four propagation regions of interest. Notice the temporal advance amociated
with the colierent exchange of energy between light and matter, as well as the beam crosssection narrowing, with stretched radial
coordinate for proper accounting of the transverse boundary condition. No severs refloction ot abrupt variation in the fisld
energy, at the wall boundary, is observed.

various instants of time in fig. 19. From the energy
current graphs, one discovers out that a focusing
phase is not an exclusive property of & resonant
absorber.

Fig. 20 displays the contour energy levels where
the enhancement of diffraction by the pre-excited
two-level atomic medium is clearly evident.
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13. Concluding remarks

Most features of the numerical model used to
study temporal and transverse reshaping effects of
short optical pulses propagating in active nonlinear
resonant media have been presented. The experiment
strives to achieve a rigorous analysis of this nonlinear

A A ,:,-..J




B B a e
e . L

L e e

L SR ah an oy

hes B amn )

—r—y
t

F.P. Martar, M.C. Newstein | Adaptive stretching and rezoning 161

interaction with maximum accuracy and minimum
computational effort. The applicability of computa-
tional methods developed in gas and fluid dynamics
to the detailed evolution of optical beams in non-
linear media has been demonstrated. By introducing
adaptive stretching and rezoning transformations, the
calculations improved considerably.

In particular, self-adjusted rezoning and stretching
techniques consisting of repeated applications of the
same basic formula were reviewed as a convenient
device for generating computational grids for com-
plex nonlinear interactions. The techniques are well-
suited for easy programming because the mapping
functions and all related derivatives are defined ana-
lytically as much as possible. Enhan.cement of speed
and accuracy was realized by improving the integra-
tion technique/algorithm which turned out to be
general and simple in its application compared with
its analogue, the two-dimensional Lagrangian
approach. Furthermore, this method has been applied
to a number of situations with and without homo-
geneity in the resonant properties of the atomic me-
dium. Note that the theoretical predictions defined
with this code, when applied to absorbing media,
were quantitatively sscertained [56,59] by indepen-
dent experimental observations in sodium, neon and
iodine, respectively [53,55,67], and recent indepen-
dent perturbational [60,61,63] and computational
analysis {62]. The design of the first of these experi-
ments dealing with sodium vapor, was based on
qualitative ideas, quantitative analysis and numerical

results obtained with the code described in this paper.

Although the topic of this paper has been most
widely received in optical radiation physics, we
believe that this methodolcgy, drawn from aero-
dynamics, will prove functional for a wide variety of
nonlinear time-dependent equations in such fields
as chemical kinetics and oil reservoir simulations.

14, Summary

The mathematical modeling of the coherent trans-
mission of ultra-short optical pulses ja a two-level,
atomic gaseous medium, which can sustain amplifi-
cation and/or absorption is presented. The main pur-
pose was to understand how inertial nonlinearity
affects the propagation of intense ultra-short light
beams. Previoualy, this effect had been intractable.

The results of this analysis served as a guide to
real-life, coherent light—matter interaction experi-
ments. The equations with radial and phase variations
included, are implemented using a two-dimensional,
time-dependent, finite-difference computer code with

two population densities, an inertial-medium polariza-

tion density and adaptive propagation capabilities.
The importance of dynamic transverse effects,
namely, diffraction coupling and a reflecting radial
boundary, in the evolution of both initial ground-
state and inverted media with different Fresnel num-
bers, has also been assessed.

Calculations using an Eulerian code predicted and
elucidated an on-resonance, transient, whole-beam,
self-lensing phenomenon in absorbers. This effect was
subsequently ascertained by experimental observa-
tions in sodium and neon. Conversely, calculations
concerning amplifiers depicted longitudinal pulse
break-up, which degraded beam quality, as substan-
tiated in high-power laser experiments. Significant
phase modulation and transverse spreading may
explain the mechanism that limits the useful output
of long amplifiers. Parametric computations illus-
trated that these self-action phenomena can be con-
trolled by tuning the various system parameters.

Accuracy and computational economy are
achieved simultaneously by dynamically redistri-
buting the computational Eulerian grid points accord-
ing to the physical requirements of the nonlinear
interaction. Evenly-spaced computational grids are
related to variable grids in a physical space by a range
of stretching and rezoning techniques. This mapping
consists of either an a priori coordinate transforme-
tion or an adaptive transformation based on the
actual physical solution. Both stretching in time and
rezoning in space alleviate the computational effort.
The propagation problem is then reformulated in
terms of coordinates that will automatically accom-
modate any change in the beam profile. This attempt
permits the construction of a computer code capable
of being physically mesningful at every mode point.

The dynamic grid obtained through self-adjusted
mapping techniques remaves the main disadvantage
of insufficient resolution from which Eulerian codes
genenally suffer. Furthermore, the advantages of grid
sensitivity are obtained while circumventing the tradi
tional impediments associated with the Lagrangian
methods.
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Transverse Effects in Superfluorescence
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Dynamic diffraction coupling is examined in superfluorescence with use of a semiclas-
sical model in which diffraction and transverse density variations are rigorously in-
cluded. The Cs data are correctly simulated for the first time.

PACS numbers: 42.65.Gv, 32.50.+d

Superfluorescence’ (SF) is the process by which
coherent emission occurs from an ensemble of
two-level atoms all intially in the upper state. An
important question in SF experiments is why the
output pulse is sometimes smooth, but at other
times exhibits multiple structure or ringing.
Strong ringing or pulsing has been observed by
several groups, including the initial HF-gas stud-
ies.? Recent Cs experiments,® however, never
show ringing at low densities, whereas at higher
densities, highly fluctuating multiple pulsing is
usually observed, and is believed to arise from
transverse-mode competition. Strong Burnham-
Chiao ringing’ is predicted by plane-wave models®
which neglect var‘ations transverse to the propa-
gation direction. We find that inclusion of trans-
verse effects, both spatial averaging and Lapla-
cian diffraction, substantially alters the one-di-
mensional Cs predictions,*® leading to greater
conformity with the Cs data.

The initial SF state is prepared by rapidly in-
verting a sample of three-level atoms by trans-
ferring population from the ground state to the
upper state with a short light pulse, creating a
cylindrical region of excited atoms.? SF pulse
emission subsequently occurs between this ex-
cited state and the intermediate state. There is
no optical cavity and stray feedback is negligible.

This study employs the semiclassical approach
to explore the influence of transverse effects,
using the average value® of the initial tipping an-
gle.*** Both longitudinal fluctuations® and trans-
verse flucutations, as influenced by diffraction,

will be discussed elsewhere.

Transverse effects are expected to influence
the pulse shapes in at least two ways, one of
which is spatial averaging. In SF experiments
the initial inversion density n,(r) is radially de-
pendent since the pump light pulse typically has a
Gaussian-like profile.” In the absence of diffrac-
tion this cylinder can be thought of as a set of con-
centric cylindrical shells, each with its own den-
sity, tipping angle, and delay time.®? The radia-
tion will be a sum of plane-wave intensities;
when the entire output signal is viewed the ring-
ing averages out, resulting in an asymmetric
pulse with a long tail.®

A second transverse effect, diffraction, causes
light emitted by one shell to affect the emission
from adjacent shells. This coupling mechanism,
which causes transverse energy flow, is more
important for samples with small Fresnel num-
bers F.

SF is inherently a transverse-effect problem
even for large-F samples since the off-axis
modes are not discriminated against. This work
is the first to correctly include this crucial ele-
ment,

Our analysis adopts the coupled Maxwell-Schré-
dinger equations, which fully take into account
propagation and transverse effects. Previous
approaches examined transverse effects in the
mean-field approximation'® or included a loss
term in the Maxwell equation to describe diffrac-
tion.**® Thus our model possesses a long sought
for degree of realism,!'’
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The simulations are based upon an extension of
a model'? which describes transverse effects ob-
served in self-induced transparency experiments.'?
For simplicity the influence of the backward
wave, which is negligible,'* is not considered,
and cylindrical symmetry is assumed. The equa-
tions of motion are'?

8¢/3z - i(4FL)'V i 2E=(492/0)@, (1a)
8@/37+®/T,=(p*/AmE, (1b)
m/3T+n/T,==-Re(PE*/N), {1c)

where ¢ and @ are the slowly varying complex
amplitudes of the electric field and polarization,
respectively, n is the inversion density, 7=t-2/
c is the retarded time, p is the transition dipole
moment matrix element, and T, and T, are the
population relaxation and polarization dephasing
times. Diffraction is taken into account by the
Laplacian term Vv 2¢=(1/pX8/3p)p3¢/3p, where
p=r/r,, with Fresnel number F=17,?/AL, 7, is
the radius of the initial inversion density at half
maximum, and L is the sample length, The
boundary conditions are 84/8r=0 on the axis (»
=0) and at r==, To insure that (1) the entire
field is accurately simulated, (2) no artificial re-
flections are introduced at the numerical bound-
ary r,>»7,, and (3) fine diffraction variations
near the axis are resolved, the sample cross sec-
tion is divided into nonuniform cells, and is sur-

(o)

( i, 8y, utiform,
i ii) ng Gowssian,
c' & uniform
g it} n°,9° Gaussion
a iving uniform,
4 8, Gaussion
m +
= 1
3!
a
w
N
3 !
z|
3
8l
2
o i
50 v/re 00 150

rounded by an absorbing shell.

Equations (1) are numerically integrated sub-
ject to the initial conditions n=n,cos86, and &
= un,sing,, which correspond to an initial tipping
angle 6, The initial inversion density in the ex-
periment is radially dependent; r dependence of
n, and/or 6, is allowed for in the computations.

Figure 1(a) displays results where spatial av-
eraging is present but diffraction is absent, by
setting F =« in Eq. (1a). In this figure the emit-
ted power of SF pulses is plotted for samples
with uniform and Gaussian profiles of n,(>) and
8,(r). First, we study ringing reduction due to
spatial averaging of independent concentric shells,
each emitting in a plane-wave fashion. The case
in which 6, and n, are both constant (curve i), the
uniform plane-wave limit, exhibits strong ring-
ing,“* In curve ii, in which n, is Gaussian {u,(7)
=nLexp| - In2(»/7,)*]} and ¢, is uniform, the
ringing is largely averaged out, resulting in an
asymmetric pulse with a tail. An essentially
identical result (curve iii) is obtained for the
case in which n, and 6, are both Gaussian {6,= 6,°
x exp[0.51n2(7/7,)*]}, showing that the ringing is
predominantly removed by a Gaussian n, regard-
less of the radial dependence of 6,. This is ex-
pected, since the output-pulse parameters are
all dependent only on |Ing,|.* As shown in Fig.
1(b), with uniform n, and 6, but with diffraction
included, the output pulse is almost symmetrical

NORMALIZED OUTPUT POWER

O

FIG. 1. (a) Normalized SF output power vs 7/Tg, Tg=M/4n%uin, L =3817o/3n,"A'’L. (7 is the same as that defined

in Ref. 5a. It appears smaller by a factor of 3 because it

uses the “partial” radiative lifetime 7, instead of the ob-

served one, T,,) 0,°=2%X10", T =T,=T,* =%, L/cT4=3.9, and F == (see text). (b) Same as (a) but with diffrac~

tion Included and uniform no(r) and 64(r).
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(a)

NORMALIZED OUTPUT POWER

(b)

NORMALIZED INTENSITY

FIG. 2. Influence of diffraction on SF pulse shapes. Parameters are the same as in Fig. 1(a), with ny, Gaussian
and 6, uniform. (a) Emitted power; (b) isometric graph of intensity for the F =1 case of (a).

and also nearly free of ringing for F <« 0.4.

Figure 2(a) studies the effect of diffraction on
the SF pulse shapes by varying F, with use of a
Gaussian n, as in Fig. 1(a), curve ii. Reducing F
curtails the oscillatory structure and makes the
output pulses more symmetrical, since the outer
portions of the gain cylinder are stimulated to
emit earlier because of diffraction from the inner
portions. Thus diffraction becomes more impor-
tant as F decreases.

Figure 2(b) is an isometric graph of the inten-
sity buildup for a sample with F=1. The radial
variations of intensity peaks, delay, and ringing
illustrate how different gain ghells contribute in-
dependently to the net power. Each shell exhibits
a different Burnham-Chiao ringing pattern. Ac-
cordingly, their contributions to the net signal
interfere and reduce the ringing. However, the
central portion of the output pulse should exhibit
strong plane-wave ringing. In fact, the ringing
observed in the HF-gas experiments? may have
been just that, since the detector viewed a small
area in the near field of the beam.

Figure 3 compares the normalized Cs SF data
of Refs. 3 and 11b (for which F =~ 0.7 with uncer-
tainty ranging from 0.35 to 1.4) to the theory (in-
cluding relaxation terms). The data were fitted
with use of a Gaussian n, and a uniform 6, with
nominal value® 6, =2(n,2nr,2L)"/?, n being adjust-
ed to yield the observed delays (1.6-2.8 times the
experimental n, values). However, in Ref. 3 the
curve published at each density was the one with
the shortest delay. The average delay is ~30%
greater at each density.'* Thus the effectite ra-

tios of our computed densities to the experimen-
tal ones range from 1.2 to 2.2, compared with the
+60%, - 40% quoted experimental uncertainties.
The quantum calculations® actually yield 6,=(2/
VM)[In(2N)"/#]¥/2, a 9% correction which further
reduces the range to 1.14-2.0. If one sets 6,=6/
VN, as suggested by the small injection experi-

[ —pem -

NORMALIZED OUTPUT POWER

TIME (ns)

TIME (ns)

FIG. 3. Theoretical fits to Cs data of Ref. 3. The
two dashed-line curves in (a) indicate typical experi-
mental shot-to-ghot variations. F =1, L =2e¢m, T,
=70ns, T»=80ns, A =2.931 um, 7y =551 ns, 6, is
uniform or Gaussian, and »,(r) is Gaussian. The
following give 8,°(f1t), n O(fit), » °(exp), with 6,° in
units of 10" /em' and n® in units of 10!%cm”: (a) 1.07,
31, 19; ®) 1.37, 18, 7.6; (c) 1.69, 11.9, 3.8; (d) 1.96,
8.85, 3.1. The broken-line curve {n (b is the one-
dimensional fit of Ref. 3b, with 6," = 1.69 and n 0 = 12,
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ment,'® the range is 1-1.8, in still better agree-
ment.

The calculated shapes are in good agreement
with the data, and are within the range of shot-to-
shot fluctuations [Fig. 3(a)]. The only discrep-
ancy is that the simulations predict more of a tail
than observed in the experiments. For compari-
son, Fig. 3(b) also plots the fit in Ref. 3b of the
one-dimensional Maxwell-Schrédinger theory.*
As can be seen, the present theory gives a more
accurate fit, illustrating the necessity of includ-
ing transverse effects. The pulse tails are fur-
ther curtailed by reducing F within the range of
experimental uncertainties''® (which used a 1/e
rather than a half width at half maximum defini-
tion of 7,). Note that often a Fresnel number F’,
defined as »,’/AL, is used; diffraction effects be-
come important when F’=1 (i.e., when F=0.36).

In conclusion, SF experiments are described
much more accurately by including transverse
effects. Our calculations do not include short-
scale-length phase and magnitude fluctuations in
8, which result in multiple transverse-mode
initiation of the SF process, leading to multidi-
rectional output emission with hot spots. This ef-
fect, which is expected to be important only for
large-F samples (since diffraction singles out a
smooth phase front in small-F samples), is under

study.
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By adapting Moretti’s self-consistent numerical approach to integrating the Euler equation of compressible flow, a uni-
fied complete temporal and spatial description of superfluorescence and optical bi-stability was undertaken. (The simula-
tion includes material initialization as well as refractive transverse and longitudinal field boundary conditions appropriate to
the cylindrical laser cavity). The respecting of physical causality in Moretti’s method was maintained; but by using an
improved deri-ative estimator at both the predictor and corrector levels, the overall accuracy was improved.

The phys:.al model includes nonplanar two-way Maxwell—Bloch propagation with spontaneous sources. The problem
of dynamic transverse effects as they relate to soliton collisions is addressed. The calculations are based upon an extension
of Mattar’s previous semi-classical model for diffraction and phase effects in self-induced transparency at thick optical
absorptions.

The computational algorithm relies on the use of characteristics, but is strictly a finite-difference scheme. This explicit
scheme involves the simultaneous integration along the time Jordinate for both forward and backward wave. However,
directional derivatives must be considered to appropriately takc into account the mutual influence of the two light beams
without violating the laws of forbidden signals. Particular case is exercised to mzintain at least a second-order accuracy
using one-sided approximations to spatial derivatives. Each forwz:d/oackward field derivative will be related to its respec-
tive directional history. A numerical approach in which the discretization is not consistent with these physical facts will
inevitably fail. Thus the numerical algorithm must discriminate between different domains of dependence of different
physical parameters.

The physical process can now be analyzed with a degree of realism not previously attainable. Significant agreement
with experimental observations is reported from the planar or time-independent analysis counterpart confined to the cen-
tral portion of the beam.

1. Introduction

The modelling of longitudinal and transverse coherent pulse reshaping that occurs when forward- and backward-
travelling beams interact coherently with a medium resonant to the pulse-carrier frequency and with each other is
presented. The physical system is characterized by a pulse duration much shorter than all the atomic relaxation
lifetimes and dephasing times. In addition, the field is large enough so that significant exchange of energy between
the light pulse and-matter takes place in a time that is short compared to a relaxation time.

- The response of the resonant medium is not instantaneous but cumulative (i.e., it is associated with the past

. ”' history of the applied field). Hence, the inertial response of the medium is not describlable in terms of an intensity-
= : dependent susceptibility. Instead it necessitates a more general functional of the applied field. The treatment dif-
[~ , fers from earlier theoretical and experimental studies where a rate-equation approximation was considered. Conse-
. ’ quently, a semiclassical formulism, similar to the one used by McCall and Hahn {1] in their analysis of self-induced
F ¢ transparency, must be adopted. The physical model is based on counter-propagating travelling-wave equations,

b derived from Maxwell’s equations including transverse [2,3] and transient phase variation [4], and a two-model

* Work supported in part by the Research Corporation, the Army Research Office, the Office of Naval Research and the Interna-
. tional Division of Mobil.

- The concept of this analysis was proposed at ICO-11 Madrid (September 1978) ed. J. Buescos, Proc. distributed by the Spanish
- Optical Society, Madrid.
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[5.6] version of the Bloch’s [7] equations describing a distribution of two-level homogeneously broadened atomic
systems. Furthermore, the simplifying mean-field approximation is not considered; instead, an exact numerical
approach that adapts computational methodologies gained in solving fluid dynamics problems is developed.

In the slowing-varying-envelope approximation, both the phase and amplitude variations of a linearly-polarized
field in the transverse direction are described by two scalar wave equations, one for each mode: forward-travelling
propagation. Each equation is driven by the appropriate polarization associated with the nonlinear inertial response
of the active medium. The dynamic crosscoupling of the two waves appears explictly in the two-mode analogue of
the traditional single-mode Bloch's equations describing the material system. The presence of the longitudinal
mirrors will further enhance the mutual influence of the two beams. Variations in polatization and population over
wavelength distances are treated by means of expansions in spatial Fourier series. The Fourier series are truncated
after the third or fifth harmonic. As McCall [6] and Fleck [S] outlined it. the number of terms needed is influ-
enced by the relative strength of the two crossing beams and the importance of pumping and relaxation processes
in restoring depleted population differences.

Counter-propagational studies have been previously considered for pulses with infinite transverse extent (i.e.,
uniform planes) by Marburger and Felber [8] in connection with nonresonant nonlinearities. Two-mode one-
dimensional analysis involving resonant interactions have been tackled by McCall [S], Fleck [6], Saunder and
Bullough [9], and more recently by Eberly, Whitney and Konopnicki {10]. However, restrictive assumptions were
made relating to the allowed form of the temporal field variations. Since the experimental arrangements often do
not satisfy the uniform plane-wave condition, the detailed nature of transverse behavior (using rigorous Laplacian
coupling) must be worked out. This present three-dimensional treatment assumes azimuthal cylindrical symmetry.

Furthermore, the interplay of diffraction coupling (through the Laplacian term), and the medium response
will inevitably redistribute the beam energy spatiall)f and temporally [11—14]. This transient two-stream beam
reshaping profoundly affects a device that relies on this nonlinear light—matter interaction effect. Several phy-
sical effects such as strong self-phase modulation, spectral broadening, self-steepening and self-focusing that have
been separately studied, combine here to affect the behavior diversely during different positions and times of
the pulse evolution. Due to the essential complexity of the governing equations of motion, only effective nume-
rical methods which are consistent with the physics can make attainable a heretofore unachievable solution.

An extension of an efficient numerical approach [15—17] was developed by Mattar to study the transverse
energy flow associated with beam variations in the single mode SIT problem. The latter code, which simulates
the rigorous interplay of diffraction (Laplacian term) and the inertial two-level atom (Bloch equation) response,
had led to the discovery of a new transient on-resonance self-lensing phenomenon which was subsequently veri-
fied in sodium [18], neon [19] and more recently in iodine [20] vapour in laboratory experiments. Accurate
comparison over a wide domain of physical dependencies was reported [21]. Consequently, the numerics of
diffraction and Bloch equations will only be briefly outlined.

In the standing-wave problem, the two waves are integrated simultaneously along ¢ the physical time: no retar-
ded time [22] (or Galilean) transformation as in SIT will be introduced.

To ensure proper handling of the two-stream effect, special attention must be exercised. For causality reasons,
as advanced by Moretti {23], only directional resolution for spatial derivatives of each stream (forward and back-
ward field) must be sought. This is achieved by using one-sided discretization techniques. The forward field deri-
vative will be approximated by a different set of points than those used for the backward field derivative. The
spatial derivative of the forward field is discretized using points which lie to the left as all preceding forward waves
have propagated in the same left—right direction. The backward field is approximated by points positioned to the
right. As a result, each characteristic (information carrier) is related to its respective directive history. Thus, viola-
tion of the law of forbidden signals is prevented.

Once the basic effects are observed and assessed using straightforward orthogonal computational meshes, non-
uniform grids which alleviate the calculational effort [24—28], will be implemented. (The nonuniform grid per-
mits greater point concentrations in the temporal and spatial regions of main interest.)

The prime goals of this study are to achieve an understanding of beam effects in soliton collision {29], and to
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relate this situation to the single stream SIT problem and to observations in super-fluorescence [30—33] and
optical bi-stability [34,35] experiments. Furthermore, one readily investigates the dependence of the counter-pro-
pagation transmission characteristics on pulse and beam shape, on the relaxation times, the resonance frequency
offset, the input pulse area(s) on-axis and, the Fresnel number, the mirror reflectivity, the initial tipping angle.
The outline of this paper is as follows: in section 2 are the standing-wave Maxwell—Bloch equations and the initial
and boundary condition. Section 3 presents the law of forbidden signals. The accuracy of the predictor/corrector
scheme is presented in section 4. The effect of improving the derivative estimator on the overall numerical scheme
is described in section 5, while section 6 presents the theory of approximating linear operators. In section 7, three-
point estimator formulae for the first derivative of a function are derived. Section 8 describes the treatment of
the longitudinal boundary condition. Section 9 presents the three-point estimate as an example for the four-point
estimator for the Laplacian of a function. Section 10 concludes the paper.

2. Equation of motion

In the slowly-varying-envelope approximation, the dimensionless field—matter equations are:

+ +
- iFvie’ +aaLT"’%e;‘-"11;"’(1’exp(—-ikz)>, 2.1)
. oe” -
-iFThe + - %ez— = +g™ (P exp(*ikz)) , @22)

with g* and g~ the nonuniform gain associated to the pump experienced by the forward (e*) and backward (e ™)
travelling wave. The quantities in the r.h.s. undergo rapid spatial variations; ( ) represents the spatial average of
these quantities over a period of half a2 wavelength

i) + )P+ +eT)), @3)
%?f*' WS = W)= —3(P+P )" +e7). 24
Equivalently

%gw (-i(AQ) + 131) P= W([e* exp(—ikz) + e~ exp(+ikz)] , 25)
W . _ige = _1(p,** ; - :

3 T (W€ — W)= —4(Pe"" exp(ikz) + Pe~" exp(—ikz) +c.c.), - (26)
with

e =Qurp/u)e* 2.7
P=(P|u), (28)
E* = Re {e* exp[i(wt 7 k2)] Q9)
and

P=Re{ip’ exp(iwt)} . (2.10)

The complex field amplitude e*, the complex polarization density P’ and the energy stored per atom are func-
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tions of the transverse coordinate

p=riry, Q.11
the longitudinal coordinate

Z = qupp2 2.12)
and the physical time

T=t/1p . (2.13)

The time scale is normalized to a characteristic time of the forward input pulse 7, and the transverse dimension
scales to a characteristic spatial width 7y of the forward input transient beam. The longitudinal distance is norma-
lized to the effective absorption length [37].

oGy = 8mwp? Nrp/nhe . 2.19)

In this expression w is the angular carrier frequency of the optical pulse, u is the dipole moment of the resonant
transition, V is the number density of resonant molecules and can sustain radial variations, and n is the index of
refraction of the background material. The dimensionless quantities

AQ={(w—wo)Tp, (2.15)
1 =Ty/rp,, (2.16)
7 =T,/7p, . .17

measure the offset of the optical carrier frequency w from the central frequency of the molecular resonance w,,
the thermal relaxation time T, and the polarization dephasing relaxation time T, , respectively. The dimension-
less parameter F (which is the gain to loss ratio) is given by

F=ag}/anr, (2.18)

and is the reciprocal of the Fresnel number associated with an aperture of radius 7, and a propagation distance
(ag})- The magnitude of F determines whether or not it is possible to divide up the transverse dependences of
the fields into “pencils” (one pencil for each radius) which may be treated in the plane-wave approximation.
The diffraction coupling term and the nonlinear interaction terms alternately dominate depending on whether
F<lorF>1.

The presence of opposing waves leads to a quasi-standing wave pattern in the field intensity over a half wave-
length. To effectively deal with this numerical difficulty, one decouples the material variables using Fourier
series [5,6] namely

P=exp(—ikz) 20 Pl ) exp(—i2pkz) + exp(+ikz) 20 Pgpay) exp(+i2pke) , (2.19)
p=0 p=0
W=Wo+ 23 [Wap exp(—i2pkz) + c.c. » (2.20)
p=1
with W, a real number. By substituting in the travelling equation of motion one obtains
3,Pi +Pi/ny = Woe" + Wye™ , (2.22)
a,P;’ +P;/Tz = WZC# + Wee™ , . (2.23)
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3Pps1) * Plapr1ylts = Wope' + Wap+1y €~ ,and (2.24)
i o Py +Pi /1, = Woe™ + Wie*, 2.29)
3,Py + Py /1, =Wye~ + Wse', (2.26)
3 Papery * Papeny/ta = Wz.pe_ + wz'(p+1)e+ ) (.27
9, Wo +(Wo — W§)/1, =—Y(e~"P[ +e*'P} +cc), (2.28)
3, W, + Wy/r, =—1(e~"Pl+e*"P} +e*P7" +e~P5"), (2.29)
3, Wap + Wap/1, =— (e~ Pl +e*Py,, te' Py, te P ). (2.30)
The field propagation and atomic dynamic equation are subjected to the following initial and boundary condi-
tions.
1. Initial
For 20,
et=0, (231)
Wo=Ws , (2.32)
a known function to take into account the pumping effects. For SIT soliton collision
P},.,=0, foralp, (2.33)
while for the superfluorescence problem
P(’zpﬂ) (2.34)
is defined in terms of a non-uniform initial tipping angle that reflects the radial variations of the atomic density —
its value can either be deterministic or fluctuating.

2. Longitudinal
Forz=0andz=L: e* and e~ are given in terms of a known incident function
€10 2.35)
and
. e (2.36)

of 7 and p. Should enclosing mirrors to delineate the cavity be considered in the analysis, one must deal with the
following longitudinal boundary equations

e =V(I-R)ey+VRe”, atz=0, 237
e” =1 —Ry) ey +VR,e*, atz=1L, (2.38)
where R, R; and (1 — R,), (1 — R;) are the respective reflectivity and transmitting factor associated with each
left and right mirror.

3. Transverse

For all z and 7 [3e*/9p] p=o and [3e*/3p] p=, max YaNishes. pmay defines the extent of the region over which
the numerical solution is to be determined. To avoid unphysical reflection from the transverse boundary, one

" - N S VTS S
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must, for amplifier calculations, use stretched (nonuniform) radial grids (i.e., consider a quasi-infinite physical
domain and map it on a finite computation region) and confine the pre-excited active medium by radially-
dependent absorbing shells [17]. Note that this condition represents an actual experimental approach in which the
laser amplifier is coated to circumvent any spurious reflections.

3. The law of forbidden signals

The concept of the physical law of forbidden signals and how it affects two-stream flow discretization prob-
lems was originally written by Moretti to handle the numerical integration of Euler equations. The method,
referred to as the A-scheme, was presented elsewhere [38]. However, since it represents the basis of our present
algorithm, we felt useful to summarize here its salient features.

In any problem involving wave propagation, the equations describe the physical fact that any point at a given
time is affected by signals sent to it by other points at previous times. Such signals travel along lines which are
known as the ‘characteristics’ of the equations.

For example, a point such as A in fig. 1 is affected by signals emanating from B (forward wave) and from C
(backward wave), while point A’ will be the recipient of signals launched from A and D.

Similar wave trajectories appear in our present problem, but the slopes of the lines can change in space and
time.

It is clear that the slopes of the two characteristics which carry the information necessary to define the for-
ward and backward propagating variables at every point, are of different signs; they A, 5, are numerically equal
to t¢/n. For such a point, A (fig. 2), the domain of dependence is defined by point B and point C, the two cha-
racteristics being defined by AC and AB, respectively, to a first degree of accuracy. When discretizing the partial
differential equations for computational purposes, point A must be made dependent on points distributed on a
segment which brackets BC, for example on points D, E and F of fig. 2. Such a condition is necessary for stability
but it must be loosely interpreted. Suppose, indeed, that one uses a scheme in which a point such as A is always
made to depend on D, E and F, indiscriminately (this is what happens in most of the schemes currently used,
including the MacCormack method). Suppose, now, that the physical domain of dependence of A is the segment
BC of fig. 3. The information carried to A from F is not only unnecessary, it is also untrue. Consequently, the
numerical scheme, while not violating the CFL stability rule, would violate the law of forbidden signals. Physic-
ally, it would be much better to use information from D and E to define A, even if this implied lowering the nomi-
nal degree of accuracy of the scheme. In other words, to say that a given scheme, using points D, E and F, has a
second-order accuracy is meaningless since a wrong scheme has no accuracy whatsoever.

In two-wave propagation problems treated by relaxation methods, the need for a switching of the discretization
scheme in passing from forward (advanced) to backward (retarded) points is evidently related to the law of for-
bidden signals.

The sensitivity of results to the numerical domain of dependence as related to the physical domain of depen-
dence explains why computations which use integration schemes such as MacCormack’s [40,41] show a progres-
sive deterioration as the AC line of fig. 2 becomes parallel to the T-axis (A, = 0), even if A, is still negative [38].
.. The information from F actually does not reach A; in a coarse mesh, such information may be drastically diffe-

: - rent from the actual values (from C) which affect A. On the other hand, since the CFL rules must be satisfied and

-4
.
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Fig. 1. Fig. 2.
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F is the nearest point to C on its right, the weight of such information should be minimized. Moretti’s A-scheme,
relying simultaneously on the two field equations. provides us with such a possibility.

Every spatial derivative of the forward field is approximated by using points which lie on the same side of E
as C, and every derivative of the backward scattered field is approximated by using points which lie on the same
side of E as B. By doing so, not only is each characteristic related with information which is only found on the
same side of A from which the characteristic proceeds, but such information is appropriately weighted with factors.
These depend on the slopes of the characteristic so that the contribution of points located too far outside the phy-
sical domain of dependence is minimized. A one-level scheme which defines

de* 3z = (e} - ep)laz, (forward wave) , 3.1
de™[3z = (e} — eg)/Az, (backward wave) , (3.2

is Gordon’s scheme [42], accurate to first order. To obtain a scheme with second-order accuracy, Moretti con-
sidered two levels, in a manner very similar to MacCormack’s [40] . More points, as in fig. 4, must be introduced.
At the predictor level following Moretti’s scheme one defines

3¢ */dz = (2eg — 3ep +eg;) Az, (forward wave) , 3.3)
0¢ ~foz=(eF —ep)lAz, (backward wave) . X))
At the corrector level, one defines

ez =(, — Eyllaz, (forward wave) (3.5)
and

3é~[az = (—28 5 + 385 + & )lAz . (3.6)

It is easy to see that, if any function f is updated as
f=r+fraT (3.7

at the predictor level, with the T-derivatives defined as in (2.21) and the z-derivatives defined as in (3.3), (3.4) and
as

f(T+AT)=L(f+f +frAT) (38)

at the corrector level, with the T-derivatives defined again asin (2.1),(2.2), and the z-derivatives defined asin (3.5),
(3.6), the value of f at T+ AT is obtained with second-order accuracy. The updating rule (3.7) and (3.8) are the
same as in the MacCormack scheme.

At the risk of increasing the domain of dependence, but with the goal of modularising the algorithm, we have
used three- and four-point estimators for each first and second derivative, respectively. We have also extended
Moretti’s algorithm to a nonuniform mesh to handle the longitudinal refractive (left and right) mirrors: the same
one-sided differencing (to satisfy the law of causality) is used for both predictor and corrector steps. Neverthe-
less, we derived, using the theory of estimation, conveniently presented by Hamming [43], second order deriva-
tive estimators at both the predictor and corrector levels. As a result, the overall accuracy of Moretti’s scheme
was increased.
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4. Order of error for straight-line predictor/corrector

We consider the following predictor/corrector scheme as suggested by MacCormack
predict: Faer =fa*8Fd .1
correct: fn+ =%(fn+| tfat Sf,;ﬂ) , @42

where £ indicates predicted, f corrected and f exact values. Assume that the derivative estimator for prediction
has an error of order p and that for correction of order ¢, so that:

f =f, +O(5P) 4.3)
fasr =frer +O(5°) | 44)
where O(5%) is a sum involving terms in & to the power i or higher. Combining (4.1) with (4.3) and (4.2) with
(4.4) we get:
predict: ﬁwl =fn + 8/ +O(6P*), ' 4.5)
correct: fast =%[};+l +fn +8f14 +OGY] . 4.6)
- The Taylor series expansion for f,., is:
'; . 8
- j =fn+6fn+?fn +O(53). 4.7)
u Combining (4.7) and (4.5) we get the predictor error €, as follows:
- - 52 .
2 €ner =fast ~Fart 2fat fo+ 5+ O() —fa —8fn + OE"")
= (%'-\) 52 +0(8°""). (4.8)
Thus
€ =00?), forallp>1. 4.9)

Consider now the corrector error:

~ p: 52 " g 5 [ +
€ntt =fat1 —fne1 =Jn +8f;+?j;l +0(53)— %fn +1 —%fn "2' far1 +O(&¢ l)

=4+ U - M) 8+ 2865 L 1p #5724 06P™)] +0GEY)

2
=(L2f:)5 +-fé'£52 +O@E) +0(6") . (4.10)
But
favi = fa+ 8fn +0GY). @1
Thus

fn=fan Y5 o _Sn g2
( 3 )s 26 +0(56%) . (4.12)
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Whence
€nsy =07 +O(E ") + OB ) (4.13)
or
Epsy =O@B™INGLAHY (4.14)
Thus the order of error for the predictor/corrector is the minimum of 3,c+ 1andp + 1. If ¢ = 2 and p = 2, their
Table 1
Comparison table between weighting coefficients for derivative estimators using Hamming’s estimation theory and Moretti’s law
of forbidden signals
.. Hamming:  fn =fn+06) ~Fp=fn+0(?)
N Moretti: fn -—f-‘"— § +°(52)’*fv:=fn——"‘l‘5+0(5
p
b Moretti Hamming
- - Predictor
L -
- 1
favl = fn+8f+ = ~ 2+0(5%) Tnet =fn* 85+ 0(6%)
' -
b - " 2
~ - ~ f
E f""=f"+6fn*_2i 874067 fn+|—fn+1=‘?62+0(53)
= ~
- Inet = a1 = 2f"52 +0(%)
ﬁ Corrector
. . - ~, . 5
.! faer = 5Un L+ fnt fny) faed ~fn = ;'fn+_2_fru'+ o(s?)
1 fn 3 : 5. 3
L fm»l st =it _f +205% 0(8%) +Tf'l+’2‘ n+l + 0(8°)
o
. 5 -
h +ifnr = f'n+l+&_ 82+ 0(s%)
2 4 - 5fy - 5 +0(52)
fn -84, _—.5 +0(%) =(M..f£)5 _£52+o(53)
. 2 2
- 5 d "
L. (n+l fn) ( J )6 ro(¥) =(£_£1)52 + oY
P - ] - 4 2 2
: but
b
b, , R L s s
. Inni =ttty *?f,, +0(7) =03
Fé
Eﬂ
- - (.fl. R 52 + 0(83)
b 2 4
‘ S
v- =‘ fnﬂ f" )62 00(63)
b 4
b
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10 F.P. Mattar et al. [ Counter-beam propagation in a cavity

second-order errors effectively cancel out. From the above, it is clear that for maximum accuracy with the
straight-line predictor/corrector, the derivative estimators for both prediction and correction should guarantee
at least second-order accuracy. Anything above second-order accuracy, however, will not necessarily improve
the results.

5. The effect of prediction error on correction error for a weighted formula estimator of the correction derivative

We investigate derivative estimator formulae of the type:
o= Loy folsi): (5.1)
4

Let § = max/{lx;y; — x;1) and assume

fa=fi+0(9, (5.2)

so that (5.1) has error c.

In applying a straight-line predictor/corrector with such an estimator for the corrector, we observe that the
error in the estimated corrector derivative, since it based on predicted values, will also depend on the error of
prediction. From (4.9) we know that the error in predicted values is O(52) for any reasonable derivative estima-
tor. Thus we may write:

Fae1 () = farr (x) + O(6?) . (5.3)
Applying formula (5.1) to (5.3) we get:

ooy = ?a,fn,.(x.)= Z‘Jaffm(x,)+0(s=). (5.4)

Thus, using (5.2):
far1 = fuer + OB +O(?) = frpy + O™ (5.5)

Therefore the effective error of the corrected derivative cannot be increased beyond 2 for a straight-line correc-
tor. It makes no sense to use a formula of type (5.1) with ¢ > 2. From the theory of estimation, conveniently
presented by Hamming [43], this means that only three weighting factors a; , &3 , &3 need be used. See table 1
for comparison between weighting coefficients.

6. Approximating linear operators

Letx =(x,, X3, X3, ..., X ), X; < X; for i # . Consider the function f and let f{x) and W be the column vectors

flxy) Wy
fixz) W21

fx)=| fAxy) |, W={ws |. 6.1
f-'(xm) ;Vm

Let L be a linear operator. We scek a vector W such that:

f=W-fx)+0E™),

b

¢

S

]
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b
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where & = max; (Ixp, — x;1),i=1, ..., m — 1. We approximate f by a polynomial Py of order m — | which agrees,
exactly with fat points x;, X3, X3, ..., X pp

Px(x)=,_=21 Lim(®) fx;) » (6.2)

where L;,, are the Lagrange polynomials for x. It can easily be shown that
f(x)=Px) +R(f, X:x), 6.4)

where the remainder term R(f, X; x) is

_ m) m
R(f, X;x) =’(—m(,°l “. (x - x;)) <O(B™), (6.5)
s
for some 6: x, <8 <x,,. Let \;; be the coefficients of L;,, so that
m-—1
Lim(x)=2J Ayxt, (6.6)
i=0
yielding
m m-—1
f)=22 fx) 20 Mg + RS, X;x) . 6.7)
j=1 i=0
Applying L to both sides of (3.7), we get
m m-—1
Lf(x)= 20 fix) 20 NjLx' + LR(f, X:x) . (6.8)
=1 =0
Define the column vector M,, as:
1
x

Mm(x) = Xz ’

xm

and let A,,,(X) be the matrix of coefficients of the Lagrange polynomials on X. Then (6.8) may be rewritten as:

LAX) = (Am(X) - LMy ()T - f(X) + LR(f, X 3x) , (69)
where superscript T represents the matrix transpose operations. We propose the vector
W= An(X) - LM,,(x) (6.10)

as our weighting vector. Note that this vector is independent of the function f.

Eq. (6.9) represents a formula for estimating a linear operation on a function given the function’s values at a set
of points. Unfortunately, little can be said at this point about the error term LR(f, X, x) for arbitrary L. Let us
concentrate our attention now on derivative operators. In this case:

d g4 (F0)
?ERU’X"‘)'dx( m! :[I;(x"x"))
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LI me+ do m)gy L
=;n_|:j( l)(3) n (x - x)) + ¢ )(9) n (x - xl)]

m-1 j
[f(mﬂ)(g)don (x —xp) +10) {” (x - x,)+Z_; n(x x,)}] 6.11)

since 0 is in general a function of x. Let us further restrict ourselves to cases where x = x,, for some k. If we assume
that F™™(0(x;)), f™* V(6(xx)) and (d /dx)| x=x, are defined, then the first term above cancels yielding

& R0 Xy ~LoEN [ 4, - 2+ 25 H(xk—x,)] (612)

=1 i=t

If k = 1, then all the terms under the summation sign will vanish yielding:

WA CIEND)] n x

4 —x), (6.13)

_R(f X )‘x—xl

d ™6x,))
3o R X3y =71 kﬂq oy -

X ‘) . (614)
The absolute value of this error term is clearly < O(6™ ). Thus if m is the order of approximation of formula
(5.7), then m — 1 is the order of approximation of formula (5.9) for the first derivative operator. Similarly, it can
be shown under suitable conditions on 6(x) and f¥(6(x)) that

d”? . m-—n
|a? RG. %:x0)|  <oemm). (6.15)

x=xk

7. A three point estimator formula for the first derivative of a function

From the results of section 6, we know that a three point formula of type 6.9 should yield an error of order
2. To define the Lagrange coefficient matrix, define the fundamental polynomials as:

3
wi(x) = FI;ll x-xp). 7.1)
Then the three point Lagrange coefficient matrix is
(" X3X3 —X3 — X3 1 W
T (xy) T (xy) 7y (xy)
Xy x -X; - x 1
As 7’21(":) "zl(xz) 3 m(x2) 7.2
XX —X; = X3 1
\ T3(x3) m3(x3) m3(x3) )

Let Dy, D, and D, be the weighting vectors of formula (6.10) for the derivative at points x;, x, and x3, respec-
tively. Since

d 0
E;Ma(x)= Zfr (7.3)
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0 T X1
AS' 1 J f xz l’
2x; X3
or
0
Di=As - 1J,
2x

which yields the forward, central and backward differencing estimators, respectively,

D =(2x|-x2—x3 xn-xz)
! m(xy) m(x3)/’

we have

d
d—x'f(x)l =

X=X

Xy — X3
my(x2) '

D =(-"z—x3 2X; — X3 — X3 xz—xl)

: m(xy) ’ my(xz) m3(x3) ’
D _(xa-xz X3 — X sz“xl—xz)
3 ‘\ ’ s - .~ I

m(x,) my(x2) m3(x3)

To simplify the expressions, we introduce the following

83=x3—X3, 8=4(x3-x,)=4(5,+5,),
1(6, ) 5, 1(52 ) 5,
=2 ) a2, +1 122 )220, 41,

P 2(51 "52 ptl, P E30G, _’6, 2p; +1

8;=x3—-xy,

The fundamental polynomials then become:

m(x)=(x; = x3)0x; —x3)=6,(5, +5,;),
m3(x3) = (x3 — X )(x3 —x3) = (8, +63) 8, .

The weight vectors for our estimation formulae then become:

R =( —25, -8, 5, +5,
YoAs, (8, +82) " 8,8,

My(x3) = (x; —x1)(x; —x3)=-8,6,,

(6, +6,)° 51)

el
T8, 48,)8,) 8,48, 8, 8,8, ' &

: 2 1
=5(G+202), 20, + 142420, 41, - (1+20) =5 (<G +2), 2+ (01 +02), ~ G +01)) ,
D =( =5, 5; — 8, 8, )
TNGG 8 616, (61 %65)5;
l 62 6%—821 81) l 1 .
) VLT WL A it A -
6|+82( 5] ’ 5]81 ,81 6( (i pZ)’pZ pl"f+pl),
D =( 5, 5, +8, 5, +26, )
NG, (5, +83)" 8,8, 1 (B, +82)5,
1 (82 =G t8) 6,) 1, 3
3.5V 5. a5, Y, ) slate), +to1+p2), 3+01).
=6|+53( 5, 5,5, 2 52 8((5 p2), —(2+p,+py), s+py)

CHaN A ame oo st g rr‘—{

13

(74)

(7.5)

(7.6)

.7

(7.8)

(79)

(7.10)

(7.11)

(7.12)

(7.13)
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8. Treatment of longitudinal boundary

When treating any point within the cavity or at either longitudinal boundary (where a partially reflecting mirror
is situated) there is no problem. But, for example, at z = 0, ¢* is determined by eq. (2.35) and not through pre-
vious predictor/corrector formulae (7.11)—(7.13) as only e~ is calculated at z = 0 in that manner. However, for a
point one increment (§ = Az) from the left mirror, one encounters difficulties calculating the forward wave. The
second needed point, which is vital to the formulae. would fall outside the cavity. An identical difficulty arises
from the counterpart backward wave with respect to the right hand mirror. The field traveling from the right is
defined at z = L by eq. (2.36).

To deal with this situation one has to modify the predictor/corrector schemes so that an increment §? is used
instead of 8. The loss of that second point, which reduces the accuracy of the derivative estimator maintains near
the mirror the same order accuracy. One must compensate this loss by locally reducing the mesh size.

9. A three point estimator formula for the Laplacian of a function

We seck a weighting vector L = (2;) such that
3

X
X . x3

—_———
ax?  xox
Because of the linearity of all operations, this may be rewritten:
Vi, =1D-f(®) +1D - A¥), ' (9.2)

where D is the weighting vector for the first derivative derived in the previous section, and 2D is the weighting vec-
tor for the second derivative. To find 2 D, we note:

D] xy =] 0], 9.3)
b 4 2

so that our equations become, using the notation of the previous sections:

vif

1)])T
. 2 -2 2
(A3 2D{x2H -(61(81+8,)’ 8,8, (8,+52)52)

X
2 82 ( 5, 52) 8, ) 4( P2 ( Pl*‘Pz) pl)
== (1+2, —2+2+2) 2r1)== (1+2 [2+2_22), 1+21), .
5’( 5, 2 5, 8,/°8, 52 ! 2 2 2 ! 2 64

Note that this formula is independent of x. Combining (9.4) with previous results, we get the following weighting
vectors for our Laplacian:

o3 - o) 22 ) -

O A
== 1 —=—)+2 (1 - —), —(+2|[1+—|+2 (1 — ~(—
L=% ! 2(2»:, 7 e Kt Gl Chnd Aavul Lz § KRR Py

F o) Coofz) (432 -5)
+=1+—), —(2+2—)+ -
2( /)’ 2 22!:3 2 . x,//°

+£2l (1 _561_)) 9.5)
oo
2

(1 +£—2—)) , (9.6)
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) )

If we introduce the variables

=ﬂ=l(§i_ ‘ 9.8
n=773% 1) ’ - ©8)
P2 1(5'2 )
=—===|—-1), 9.9
255771, ©9)
6 1
d=-2-=§'(51 +52). (9.10)

The formula simplifies to:

: ( o ( d) ( : ( : )) o ( 3 ))
= _——— —_— —N2=-2— 4+ + —— ——— ] —— s 9.11
L, 7 1 27 +ry|l 0 ., 2 21“_l (r,+r)) 1 =) 1 27, r, 1 ©.11)
1 1d d d) ( d)) 1d ( d ))
=— ——— —_— ) + ]+ —_ —_— +—]1, 9.
Lg P (1 2x1 +r; (1 * ), (2 " (1 2 r; |1 X , 1+ 2%, il %2 ' ( 12)
! l1d d) ( d ( d )) 3d ( d ))
=— +—_—+ o] - + 22—+ + —— do—— +—1]). 9.
L3 FE (l 2X3 ry (l 3 , 2 2x3 ("1 rz) 1 X s 1 2x3 r 1 X ( 13)

It should be noted that, since the Laplacian involves a second derivative and only three points are used, the above
formulae will lead to error term of first order in § (or d).

This section can be readily extended to a four-point estimator. The details of the derivation can be found in ref.
{44].

10. Concluding remarks

Most features of the numerical model used to study temporal and transverse reshaping effects of short optical
pulses counter-propagating in a nonlinear Fabry—Perot entry have been presented. The derivation of the differen-
cing formulae was summarized. The experiment strives to achieve a rigorous analysis of this nonlinear interaction
with maximum accuracy and minimum computational effort. The applicability of Moretti A-scheme developed in
gas dynamics to this laser physics problem has beén demonstrated. Extension of his method to nonuniform grids
were carried out. To facilitate the legibility, maintainability and portability 'of the program, as well as the imple-

. mentation of further extensions of the planar wave theory, structural modular programming techniques have been
used. The resultant code is concise and easy to follow. Results of this algorithm will be presented elsewhere.
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The complete mathematical modeling of nonlinear light-matter interaction is presented in a hydrodynamic context. The
field intensity and the phase gradient are the dependent variables of interest. The resulting governing equations are a gener-
alization of the Navier —Stokes equations. This fluid formulation allows the insights and the methodologies which have been
gained in solving hydrodynamics problems to be extended to nonlinear optics problems. To insure effective numerical treat-
ment of the anticipated nonlinear self-lensing phenomena, a self-adjusted nonuniform redistribution, along the direction of
propagation, of the computation points according to the actual local requirements of the physics must be used. As an alter-
native to the application of adaptive rezoning techniques in conjunction with Eulerian coordinates, Lagrangian variables are
used to provide automatically the desired nonlinear mapping from the physical plane into the mathematical frame. In this
paper we propose a method suijtable for the solution of the described problem in one-dimensional cases as well as in two-
dimensional cases with cylindrical symmetry. To overcome the numerical difficulties related to the inversion of the Jacobian,
an analytical algorithm based on the paraxial approximation was developed.

1. Introduction

When sufficiently strong optical beams propagate through nonlinear media, significant self-action phenomena
[1] can occur and the propagation characteristics are significantly altered from the vacuum propagation [2]. In .
particular, self-lensing associated with the nonlinear index of refraction of the medium appears. The correspond-
ing nonlinear beam distortion due to the nonlinear interaction can be rigorously solved only by using appropriate
numerical methods since the equations are far too complicated to be handled by any known analytical techniques.
Should the beam focus along the direction of propagation, its transverse dimensions will drastically change at
the focal point from what it was at the aperture. It becomes necessary that the transverse dimensions of the three-
dimensional grids shrink/expand in size as the focal point is approached/passed [3-8,17].
For the nonl:near interaction, the actual desired shrinkage/expansion of the transverse mesh cannot be guessed
a priori; it must be locally determined by the solution to the problem itself. It is therefore necessary to have the

* A numerical algorithm associated with the hydrodynamic analogy of quantum mechanics was previously developed by the
same authors, using explicit finite differencing methods in Eulerian coordinates as well as splitting and self-adaptive rezoning.
The paper was presented at the Second International Symposium on Gas Flow and Chemical Lasers, Western Hemisphere
(1979) held on 11~15 September 1978, at the Von Karman Institute of Fluid Dynamics in Belgium.

** Partially supported by the Research Corporation, the Army Research Office, the Office of Naval Research and the Interna-
tional Division of Mobil. Present address: Laser Spectroscopy Laboratory, MIT, Cambridge, MA, USA.
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2 F.P. Mattar, J. Teichmann | High intensity laser beam propagation

three-dimensional space grid changing concomitantly with the actual beam shape and size and the local wave-front.
To avoid oscillatory behavior associated with the decomposing of the electric field into its real and imaginary
parts, it is necessary to describe the field using the modulus and the phase [9—~12].

The present paper deals with the hydrodynamic analogy {11,12] of the problem of nonlinear propagation.

In this approach, the evolution of the beam is interpreted in terms of a flowing fluid whose density is propor-
tional to the gradient of the phase. This description allows the treatment of more slowly varying dependent
variables and yields equations of motion that are similar and equivalent to those obtained by the method of mo-
ments used for the average description of the beam propagation characteristics [1,13—15]. Furthermore, this
scheme could allow even larger and coarser marching mesh sizes if it were used simultaneously with an auto-
matically adaptive nonuniform rezoned coordinate system. The set of governing equations thus obtained is a
generalization of the Navier—Stokes equations [16—18] that describe a compressible fluid subjected to an internal
potential which depends solely and nonlinearly upon the fluid density and its derivatives. This internal potential
is often referred to as the quantum mechanical potential.

A further transformation of the dependent variable, namely the use of the natural logarithm of the density, is
also introduced [17] to simplify the numerics. To generate an effective and reliable computational code with
modest storage requirements, one usually introduces mapping techniques which consist of various function and
coordinate transformations. An alternative method to this systematic is the adoption of Lagrangian coordinates.
The Lagrangian approach [19] operates with the displacement of a fluid element, following the temporal evolu-
tion of its trajectory. In this way, one easily finds the evolution of the phase and the energy in the plane trans-
verse to the direction of the beam propagation. Hence, the system of Lagrangian trajectories corresponds to the
automatic self-adaptive nonuniform rezoning and mapping techniques used in the usual Eulerian system; it
should also ensure an optimum redistribution of the computational points during the calculation in the various
regions of interest. Furthermore, the number of equations is reduced (in comparison to the Eulerian description),
and the coupling between the different variables is strengthened, thus accelerating the rate of convergence of the
algorithms.

The organization of this paper is as follows: section 2 presents the equations of motion. Section 3 is devoted
to the energy conservation and the motivation for an identification of physical variables. Section 4 introduces
the fluid description. Section S reviews the method of moments. Section 6 summarizes the proposed algorithm
based on the Lagrangian formulation. Section 7 presents the conclusion.

2. Equations of motion

For the class of problems describing the propagation of optical signals, the slowly varying envelope approxi-
mation is usually adopted, namely [1]

Er, 0= Rete(r, ) exp[i(%z - wot)]}, ' (1)
where z designates the propagation direction. Assuming that the complex amplitude e(r, r) changes by a small
fractional amount, temporally in the optical period 21r/w, and spatially in the optical wavelength 2mc/wy, the
field equation becomes first order in z and ¢ and reduces, for a linearly polarized light, to the quasi-optics equa-
tion

i ¢ ) no 9
. ——— _vz R +...-———-e = ez R 2
2(00 No Té aze c ot 1I 'e ( )

Here, n is the linear index of refraction of the background material, ¥ is proportional to the nonlinear part of
the refractive index n,, n = no +n,lele. The differential operator V4 is the transverse Laplacian in Cartesian
coordinates. The time scale is normalized to a characteristic time 7, of the input pulse and the transverse dimen-
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sion scales to a characteristic spatial width r;, of the input pulse. The input beam is supposed to have azimuthal
symmetry. By introducing a moving frame of reference,

n=z, 7=t~ (ne/0)z €))
the quasi-optics equation (2) reduces to the nonlinear Schrodinger equation:
i ¢ a
—— —Vie +—e=1yletje. 4
- 2wo no e ane vietie @)
3. Energy relations

By multiplying eq. (4) by e and adding the complex conjugate, one obtains (with y = v, + iv2)

i ¢ 9
— —(eV%e" —e°Vie) +—le? = o 5
ou e (eVie —e"Vte) 3 le*l = 27,1l &)
or equivalently
Vi« Jr +3J,/3n=27,le*|, (6)

where J, = le*| = 4%,

Jr = (2wono) eVr « (eVye” — e" Vre) = (c/nowo)[4* (V19)].

In the last relation, the polar representation of the complex envelope was used:
e = A exp(ip), )

where 4 and ¢ are the real functions of coordinates.

The components J, and Jy represent the longitudinal and transverse energy density flow. Thus, the existence
of the transverse energy density current is related to the transverse gradient of the phase ¢ of the complex field
(7). When Jt <0 (i.e., V3¢ <0), self-induced focusing dominates the spreading due to diffraction [20]. The
choice of the intensity 42 and the gradient of the phase ¢ as new variable is physically enlightening and elimi-

nates most of the oscillatory phase difficulties [2] associated with the use of real and imaginary parts of the
electric field.

4. Fluid description

Let the nonlinear polarization on the r.h.s. of eq. (4) be written as
PNL = (xy +ixp)e = xnpe, (8)

where xg and x; are real functions of A. Using eq. (7), one obtains from eq. (4) the transport the the eikonal
equations (19 = koc/wo) [21]:

9 4mwd
k‘,;’;m +Vp« [A%Vr¢) =~ = 2 y14?, )

3 A - ViA]_4nrwh
uoaw[(vw)’— . ]= ==

Az cz XR- (10)

The transport equation (9) expresses the conservation of beam energy over the transverse plane. When x; =0, the
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total power is conserved aiong the direction of propagation. The eikonal equation (10) describes the evolution of
the surface of constant phase. It has the form of the Hamilton—Jacobi equation for the two-dimensional motion
of particles having unit mass and moving under the influence of potential [1] given by

V= J_.(va)A-l ;21 (ll)
T3 T n XR >

if ko, 2 is regarded as time coordinate and ko,X. kg, as spatial coordinates. Furthermore, if one adopts A% and
V16 as new dependent variables, the equations of moticn become similar to the continuity and momentum
transport equations of ordinary hydrodynamics.

By defining
v=ko'Vip, p=4> (12)
and supposing x; = 0, egs. (9) and (10) can be written as
dv 1 - 72
—+ @ Vp)v==—s V[p~V3(V? +==(V1p), 13
an (v-Vp)o 7 VT [0™'"2(V? Vb)) ko (V1p) (13)
)
2P+ V1 (pv)=0. (14)
on

These equations are the momentum and continuity transport equations of a fluid with a pressure P = (V3v/p)\/p.
It should be emphasized that this pressure depends here solely on the *“fluid density” and not on the *“velocity™.
Eq. (13) can be rearranged into

0 1 1
E(P v)+ V- (pvv) ‘-"‘2;&; Vo [%(Vzrpﬂ —E(VTP)(VTP)] +'Z‘-§ P(Vyp), (15)

where { is the unit tensor.

5. The averaged description of wave beams in nonlinear media, the method of moments

The existence of constants of motion and conservation laws, even in a limited number, is very useful for
obtaining insight into the dynamics of the self-action phenomena associated with the propagation process. To
analyze the nonlinear quasi-optic propagation, Viasov et al. [13] extended the method of moments, originally
developed in connection with the transport theory. In this theory the problem of finding a certain distribution
f(§) is replaced by that of determining the moments M,, = [ £"f(¥) d of this distribution, which are usually
more easily calculated than the function f(¥) itself. Knowledge of all the moments allows the use of known
methods to reconstruct the form of the function f(%). A simple expression for estimating the width of the dif-
fracted beam is derived in terms of the zero, first-order moment and second-order centrifugal moment integrals
of the incident field. These moments are integrated over the full beam cross-section and are, therefore, functions
of the propagation coordinate only. The theory of moments only holds when the susceptibility is a function of
lel?, (i.e., when the nonlinear index of refraction is a cubic or fifth-order power in the field).

The starting point of the method of moments is the recognition that the existence of a hierarchy of conserva-
tion equations [13,15]

) )
—=—V' —_— = 2Vo —— = . .
ar J, a:’ cve.T, ™ [T(T)]=-V-Q, (16)

implies a relation between the conserved quantities and the time derivatives of the moments of w. Here, w is
scalar, J and Q are vectors and T is a symmetric tensor of second rank having the trace Tr(T). The first three
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moments of w are defined as follows:

w= [avw, S=%derw, (Qere)? =-;7fdw=w. a7
v 1 4 Vv

The integrals are taken over the volume in which the field quantities are defined, and r is the position vector.
Using the Gauss theorem, it can readily be shown that

— =5 =73 @)= 0.

In deriving these results, it was assumed that
nJ=n+Q=n-T=0

on the closed boundary Z with normal # of the volume V, If £ is at infinity, all integrals converge. It thus follows
that

W=W,, S=So+v-t and (Ql)=0}+2t+c,f?, (18)
where 8, = 8(=0), Qo = Q(t,) and

1 I 1
o=Wo;[dVJ|t=o, g ;[dVr-Jlt:o, cz———u—l;!dVTr(T)lt:o.

The relations (18) have a simple physical meaning: the energy W of the field is conserved, the energy center §
moves along a straight line with a constant speed v and the square of the effective radius of the bunch, Q%,

- varies according to a parabolic law (for t = oo, Qg¢¢ = ). It can readily be verified that the conserved quantities
satisfy
(] 9*
o—a—t;,derw and e3=y Vdeﬂw. (19)

The hierarchy of conservation laws is satisfied by Maxwell’s vacuum equation when W is the density of electro-
magnetic energy, J is the Poynting vector and T is the Maxwell stress tensor.

Using the transformation (7) and introducing the fluid quantities (12), one obtains for the quasi-optics equa-
tion (4) wheret +»n,V—>Vyandy, =0

w=p, J=py,

! 1 Y2
Tag = ~ s [(Vap)(Vap) ~ PUaU +;k—%' 8ag(Vin) + % éapp’]. a,B=x,y,

1
TH(T) =% [(V}p) - 407  (Vro)* — 2kdp(v+ v) + 2ko73p0°],

: . 1 - 2

' Q=27 (Vr{Vr * (ev)] - (V10)(V1 * v) + v[(V}0) - 67! (V1p)? — 2khp(v - v)]} "“’;7292 : (20

o The equation of the effective beam radius is now
Qs = Q% +2c1m +can® (¢29)]
with the following constants of motion:

.--.. Wo = fda p|ﬂ=0

) z

¢
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1
2 -
% = Wo }:fdo '2pln=o

1 v

T — . \;‘
€= !dgr PV, o o
/

&2 = f do (Vo) — 107 (Vro)? — 2k3p(v - v) + 2v:k00%}, . (22)

wo 2%

The beam quantities (20) verify the conservation relations (16). The invariant ¢, is related to the transverse
energy current. In terms of amplitude and phase, the integrand is 4%(# * V1 ¢). This shows that when the trans-
verse current of energy, which is proportional to the transverse gradient of the phase ¢, is negative (V3¢ <0),
self-induced lensing dominates diffraction spreading. It should be pointed out that these results only are valid for
a nonconfined beam of finite power. The integrals in the x, y plane around the outside boundary of the beam
cross-section can only vanish if both e and Ve vanish. This is not possible on a finite boundary unless e
vanishes everywhere. For a finite beam the boundary should recede to infinite. In the numerical solution it is
necessary to introduce 2 perfect conducting wall. The surface ir: :2¢-uis remain finite, although small. For this
reason numerical solution will disagree with the average mean square radius calculated from the method of mo-

: ments by a small finite difference.

- A similar hierarchy of moments was derived via the quasi-particle approach [22]. An alternative to the

o Schrodinger picture [13] discussed here is the Heisenberg picture proposed in ref. [23]. Although both methods
- give the same expectation values, the Heisenberg picture is believed to be simpler.

p The method of moments as outlined here represents a local check to the numerical analysis giving the average

estimate for quantities related to e*.

o
AN 6. The Lagrangian formulation
o Let us summarize the fluid equations taking the quasi-optics relation (4) with the nonlinear polarization term

in the form (9). One has for x; # 0 (nonzero gain or absorption)
i::. —a-p.',v .-(pu\z_lxp p[lv+(u- V )U] =_l.—pv [p-llzv2(pl/2)+x ] (23)
- an T Sk, NP an T T T ri-

The second equation can be rewritten as

9
- ‘. p[gu +(v- VT)U] 4k2 Vr{pVi(n p)] + = 2k2 VIXxr
. or, by analogy with usual “fluid” equations, as
= d ]
. —+(v V¥ = VP +—— ViXR,
¢ P[an (v-Vr) T 2k’ TXR (24)
T where the scalar function P is defined as
= [pV (In p)]. (29)

‘ To elaborate the appropriate computational code, we transform egs. (23) and (24) into the Lagrangian coordi-
nates [19].
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The two hydrodynamic equations (23) may be rewritten in the Eulerian coordinates (); = 0) in the form

D D
—p+pVr-v=0, —v= VP,
Dn pVT pDn T

. where D/Dn =9/07n + v « Vr is the Eulerian derivative describing the motion of the fluid element in a given point
of the laboratory frame of reference. Let us transform eq. (23) into Lagrangian coordinates in which the observer
moves with the fluid element. In this way, the local derivative 3/dn becomes equal to the total derivative D/Dn
although the new coordinates will be related to the initial position of the fluid element [24].

6.1. The one-dimensional case

Let X, n be the Eulerian coordinates and X = X, (n = O define the Lagrangian coordinate X . The speed v is
defined in the one-dimensional case as v = 3.X/d7.
The transformation relations are as follows:

: L

X=XXo,m)=Xo+ [ dnfu(Xo,mL), m=mp. (26)
0

It thus follows that

L_(a)()" 3 b 9 9X 0

ax \ax,) ax," amg om omox

The first equation (23) gives for x; =0

ap ( X )" a X
— p —— — — 0’
anL \dXo/ 09X, omy
which integrates to the mass conservation law
P = Po(3X/2X,)™. (27)
The second equation (24) transforms with the help of (27) into
X d 1 (ax )" 9
—=——2PFP+ - 28
Poomt X 25 P%\ax,) axy % (28)

Using eq. (27), the scalar function P reads in Lagrangian coordinates

Pk P () - ()

and eq. (28) gives, using eq. (29),

S FX__L (ﬂ)"(é’_{)[z(ﬁ)“(a_’{)’_(é’_{)]

- i akd | \axo/ \axi/i™\ax,/ \ax3 X3

- o) ) (GG - () () - Gl 23) s

F 4 +(axo) [7 axo/ \axi/\ax3 \oxe ax’) ax} aXo) Xy \R (30)

The system of fluid equations (23) reduces to a single equation in X which has a second-order derivative in
variable 7 and derivatives in X up to fourth order.
3 For a nonlinear media with a nonvanishing x, the first equation (23)

2 oy Dy
anPU prp—

ax? T Pax¥ Tk, P

e ———— _ ¥ m
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is transformed into

2]
am L \Vax,/] 'k M

which by integration gives

nL
90X 1
= - dny .
P(axo) Po exP{ko([ nL Xl}

With this dependence of p on 7, the second equation (24) reads

ny 2 -1 nL
1 32X 2 1 (aX) ( ) 1 , }
— o — —— ——— —— — d .
Po exv{koaf dny X‘}an aX0P+2k%,p° axs) \ax,xe exp koof ngx[

6.2. Two-dimensional case in cylindrical geometry

In cylindrical coordinates, the system (23) reads

1

i v 9 ‘-_.(m)——l
P U te P = PXt,

2 2 1 af12 [ 3. N.»p 3
—u, +v - —|r= +=—= —Xgr.

"(an U o "’) Wl sl " ”)J} 25 or X

Introducing the Lagrangian variables rop, n1

re=rgfoL, ML), ME=TL,

we find the solution of the first relation (38) in the form (for x; = 0)
or, r

pEp °(a » ) e
ToL TE

Let us define the fluid “pressure” by analogy with previous cases as

9
- {pé [ gt p)]}.
The scalar P is explicitly
rapelon) [om) () - Gre) () ()
4kg " \orgL dro/ \rgy dro/ \ordL/ re\ardy
Finally, the eq. (36) becomes
3rg 1

oo ) () ) G - (22) G
ani 4k} dror/ \drg/ redl\org/ \org dro/ \orgL/

] T N o)
rg \Org/ \org droL aror/ \ord J\ord )™ “\or ) \ord,

(ar..;) (a‘rg) 1(a r5)+_2_(355_)2 1_(ar5 )" a’rg‘]}+ 1 (arg)' 3
droL/ \orge) rt\org/ reg \ard, rg \drgL (ar?,,_, %3 \orgL)  argL X

oot nbnellon ol el el ST I YOUC WP N S PN WY UDUFYPE  W N W

€18}

(32)

(33)

(34)

(36)

(37)

(38)
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In the case of the imaginary part of X, X3 # O we have by analogy with eq.(32)

atrg FoL )" RN | I /g )" )
— = — e —— —_— — | — —_— i 39
ant (po rg exp ko 5[ dnu xine) oroy d 2k} \a’oL droL XR 39)

Details of the two-dimensional case in Cartesian coordinates can be found in ref. {25].

The evolutional equations (30) and (38) are rather complex dus to the presence of the inverse displacement
gradient Jacobian Jj;. In order to obtain the evolutional equation more accessible to numerical analyvsis, we limit
ourselves to the paraxial approximation, assuming that the beam convergence or divergence, respectiv-ly, due to
the nonlinear polarization remains small. Let us introduce the Lagrangian displacement § [26]

aX; of;
x=xo+&, €lxol, Jij=mo— =8+ 40
[1] g |§| I 0' if aXOI i aXol ( )
The value of any function (field) defined on x, resulting from the displacement § may be expanded in power
series of & either in form of Eulerian expansions defined at x(n), either in form of Lagrangian expansions defined
at xo(7). Introducing the Eulerian expansions

P(X) = po(x) + 81 0(x) + 82p(x) + ..., V(X)=vo(x) +8,0(x) +E;0(x) + ...

into the system (23) and expressing the first and second order changes 8 as functions of the displacement §, we
obtain the following hierarchy of evolutional equations [24]. (We assume 3/07vo = 0, X; = xr = 0):

1
Oth order: (vg * V1)vo = o™ Vi (o3 Vipl'?}; 41
]

Ist order:

E +200- Vp)E +®o V1)((vo* V)& — (& * Vx)uol + ([o - V3)§ — (& Vr)vol * Vrlve

= 2 V(652 (V1  (o®)] Vhob™ — 63 VR 165 Vr - op)] s @2)
2nd order:
. o g
(& V)& +(vo - V1)§ — (& * Vr)uo] + & aXoiua(iX’oi

+ {[(&* Vr)vo] * V}[& +(vo* V)&~ (§° Vr)vol + {(§- V)& + (o - V)& — (& * Vr)ve] * Vr}vo
3%v,

azl;o
+4(vo VT)E:Eimﬂ{[&Eim] V-r}vo

1 3t;
% Vr {pa”’ [[Vr * (Po8)] Vi [05" 2 V1 * (0oB)] + po[ﬁi—aﬁa—i +(Vr -g)’] V3po

¥ 5 ; g
+ [z(a- VD[V * (o8] ~ ki g ~ 200 det 5;‘;;] V’Tp.,] +p5 V4 [pe,n [_(vT %

_ % _afL] a3y, . 172 3o ’2 (aii )] .
3Xo; 3Xo; 205" (& V)Vr * (poB)] + 00 Eiﬁj———‘axmaxw‘fZPf, det %)) | (43)

for dispersive media x; # b, xR # 0 and the integration of the first equation (23) results in

p= po(det I exp[(l/ko) jl dn' x,]. (44)
0

S
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The r.h.s. of the second evolution equation should then be completed by an additional term

_k’ {Vrxr = (V1 - §)Vrxr}. (45)
In case of an azimuthally symmetric beam we introduce cylindrical coordinates assuming that the azimuth ¢ is

ignorable. Then

detJ =L -ir-—
ro org

Under the assumption of the paraxial approximation, r = ry + £ the hierarchy of evolutional relations reads
Ga =xr =0):

"°’airo”°’ % aio {" Ol : 3 "m} (46)
£ 2vo,gg‘+ u(’,,g%g Vork :; vor + vo’(aio E)(g—o”w)— E(%uo,)z

ok 2 (22) +(g7;:a)+2g¢:o 2 20,2 Lo, @
zBr—o[z" vor af' - aa"r‘;’] 3 a R (z"’_a:%_)

[pug- a3 s%’;][s‘*vo‘r e B T

1 22
=33 ai lpo”’[[dW(poS)]—lpa”’ div(pot)] - 200 r,[ o"? ——{dw(pog)]

uzi _3_E =1/242 3 Po 172 5 172 3E 2]
+ 00 ro 3ro * 4 ’% +po f% +P0/ (aro)
£ ot

o e ot ) 2

A generalization of these equations for the dissipative case, x; # 0, xg # O is straightforward.

In the two methods presented, the set of starting transport equations is combined, via the Lagrangian displace-
ment X on £ in the case of paraxial approximation, into one equation for X or §, respectively. This equation [egs.
(30) or (38), eqs. (47), (43) or (47), (48)] is further elaborated using a suitable differencing scheme. The virtue of
the present analysis consists in the fact, that only one variable has to be calculated. This differs our method from
Lagrangian analysis, carried out in the past [24].

7. Conclusion

By writing the paraxial scalar wave equation in a conservation form, one finds that it has the structure of the
hydrodynamics equation. On the basis of this analogy, the intensity of the laser beam, lel?, can be interpreted as
the density p, while the phase, ¢, as the velocity potential (v = grad ¢) of a hydrodynamic flow process subjected
to a pressure, which — in contrast to classical hydrodynamics — depends on derivativés of the fluid density.

It is noteworthy that this hydrodynamic approach to intense laser propagation in nonlinear media removes the
rapid numerical oscillations encountered when the field is described by its real and imaginary parts: the new
independent variables change much more slowly.
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During the nonlinear interaction, significant reshaping and beam distortion take place. To achieve accuracy and
efficiency simultaneously, one must resort to nonuniform grids which self-adjust according to the local require-
ments of the physics. Thus, the Lagrangian description — as opposed to the Eulerian description, which would
have required mapping and adaptive rezoning techniques — is adopted.

The continuity and velocity equations reduce to only one evolution equation for the Lagrangian displacement.
The resulting governing equation involves derivatives 8r/dr¢ up to the fourth order. To overcome the numerical
difficulties associated to the inversion of the Jacobian, an analytical algorithm valid in the paraxial limit was
further presented.

The object of this communication was to illustrate a novel transfer of effective computational techniques
gained in fluid and aerodynamics to optical physics [8] by emphasizing the fluid equivalency. The main goals of
this study were to (1) propose an algorithm which is totally consistent with the subtle physics requirements; and
(2) to readily gain additional physical insights in this essential nonlinear light—matter interaction.

It is noteworthy that a recent independent research effort also dealt with the hydrodynamic analogy in a
Lagrangian description for nonlinear propagation in the atmosphere. However, an explicit algorithm was adopted
[26].
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Abstract

Results of numerical calculations are presented and analyzed for pulse generation and subsequent stabili-
zation in large propagation distance z , for a collection of two-level absorbers which are swept-excited by
an impulse inversion along the z-direction at the speed of light in the medium. The calculation is performed
using the coupled Maxwell-Bloch formalism and for the conditions that Tp =Ty , T2 > > 1., g/k> > 1, where
Tz is macroscopic dipole moment dephasing time, Ty is the longitudinal relaxation time for the absorber, 1.
is the characteristic superradiant cooperation time among the absorbers and g/ is the linear gain, g , to
diffraction loss, ¢, ratio. Results of the calculation for nonlinear pulse evolution and propagation for one
spacial dimension (planar case) is compared with the results for the comparable case where transverse mode
coupling is included.

Introduction

In 1975, Bonifacio, Hopf, Meystre and Scully‘(hereafter referred to as BHMS) predicted the conditions for
which steady-state pulses having characteristics of superradiance (intensity .p?, temporal width . 1/p , where
p s the density of absorbers, and pulse envelope varying in time as hyperbolic secant with characteristic
delay of the peak from the excitation) can be generated in swept-gain amplifiers. They obtained and analyzed
steady-state solutions of the coupled Maxwell-Bloch equations in the retarded time frame in one spacial di-
mension z in the 1imit 2z - » , for the initial condition that impulse inversion occurs at v = 0, where v = t
- z/c, in the retarded time. Exact analytical results under these conditions were obtained by BHMS for hom-
ogeneously-broadened systems for two special cases, T2 < < Ty and T} = Ty, where T; and Ty, are the transverse
and longitudinal atomic relaxation times, respectively.

1
Subsequent theoretical work which followed the initial work of BHMS addressed to the quantum mechanical as-
pects of pulse buildup from noise and the role of spontaneous emission in the small signal regime for a sys-
tem with small Doppler width? and for a homogeneously-broadened system.’ Further theoretical work analyzed

the effects of coherent pumping, for the excitation, on pulse buildup, both numerically® and analytically:®7

The first reported detailed experimental study of swept-gain superradiance®’ was for C'Jz-pumped CH3F.

Since Dicke's initial predictions for the circumstances under which a macroscopic volume of atoms can
radiate collectively (collective, spontaneous relaxation), a large amount of theoretical and experimental
effort has been devoted to the subject of superradiance.’ Experimental arrangements for the study of super-
radiance has been identical with that for swept-gain superradiance.?s!" Even though the two phenomena stem
from entirely different physical processes, the same physical model should account for both, each being a
limiting case essentially in terms of the iength of the active volume of atoms. Indeed, the first reported
experimental study of swept-gain superradiance® also constituted a study of the evolution from superradiant
response of the system through swept-gain superradiance as a function of the length of the active volume
along the propagation axis.!® The experimental results indicate a continuous transition from conditions
supportive of superradiance or superfluorescence through swept-gain superradiance in the asymptotic regime
of large propagation length z,

In this paper we analyze numerically, and interpret analytically, the evolution of the response of a
collection of two-level absorbers to swept impulse excitation, from the small volume, superradiant regime,
through the asymptotic, steady-state propagation at sufficiently large pro?agation distances 2, We also de-
termine the effects of transverse mode coupling on the pulse generation'!'*!'?  and propagation.!?

*ork partially supported by ARO, ONR, Battelle, University of Montreal, and Research Corporation,
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The model is presented in the next section and the analytical results for swept-gain superradiance in the
planar regime obtained previously by BHMS' are briefl¥ reviewed. A comparison is made between conditions
for the observation of single pulse superfluorescence'® and swept-gain superradiance.! Results of the nu-
merical calculations are presented and discussed in Section III for the evolution of pulse area with propa-
gation distance z for the single spacial dimension. The evolution from superradiance to steady-state
swept-gain superradiance and their connection is explicitly analyzed and discussed. Results for a compar-
able case incorporating transverse mode coupling with a Guassian gain profile are presented and compared
with results for the planar, one spacial dimension calculation. It is shown that the effects of self-focus-
ing can be much more important in the swept-gain, steady-state condition than for the particular correspond-
ing conditions for superradiance. The results of our calculation are summarized in the last section and
future work connected with these results is outlined.

II. Coupled Maxwell-Bloch model for swept-gain superradiance

BHMS showed® that if a volume of two-level absorbers is gain-swept at the speed of light in the active
medium by a traveling impulse excitation, a solitary pulse is generated from noise amplification in the
amplifying medium and reaches a steady-state at sufficiently large propagation distance z, provided the
gain, g, to loss,« , ratio satisfies the condition g/c > 1. The solitary pulse is characterized by super-
radiant-1ike features with respect to pulse shape, intensity, temporal width, and delay of the peak of the
pulse envelope from the impulse excitation.

They considered the coupled Maxwell-Bloch equations in the retarded time frame, which is a frequently
used model for pulse propagation and generation in nonlinear media,

P _ P

i —Tz (2-1)
__aA =S - - .A— -
9T eP T] (2-2)
9 _ - -
3¢ P-xe. (2-3)

In the above equations, P is the dimensionless macroscopic transverse polarization per atom, 4 is the inver-
sion for the two-level atom, T2 and Ty, are the dephasing and relaxation times for the polarization and atom-
ic inversion, respectively. The thiré equation,(2-3), is the linearized Maxwell equation'’ in the retarded
time frame in the slowly varying envelope (SVEA) and rotating wave approximation for the pulse envelope E.
Here, the electromagnetic field envelope, £ , is normalized to give the Rabi frequency!s ¢ ,

u E
= 9 -
€= % (2-8
where pg is the matrix element of the transition dipole moment between the pair of atomic energy levels and
E is the electromagnetic field envelope which is a function of the propagation coordinate z and retarded
time t ,

t=t-2z/c. (2-5)
The other quantities involved in Eqs. (2-1) - (2-3) are
2

< . 3 2 ,

G--'Fz--ﬁ—_l% (2-6)

where g is the gafn and A is the wavelength of the carrier frequency of the single mode radiation field en-
velope, p is the atomic density and v, s the spontaneous atomic relaxation time. The loss term in (2-3)
defined by <« is the linear Toss which arises because of diffraction as well as other dissipative processes.
BHMS considered the steady-state solutions of (2-1) - (2-3), i.e., the solutions under the condition
e(z+m,7) = 1im Je(0.1)e™ % + & 3 dz* e'K(z'z ) P(z‘